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ABSTRACT

This research deals with the specification, analysis and

evaluation of some routing and topology design procedures for large

store and forward packet switched computer communication networks. The

procedures studied are an extension of present techniques and rely on a

hierarchical clustering of the network nodes.

Hierarchical adaptive routing schemes are investigated in the

context of large networks. In particular, optimal clustering structures

are determined so as to minimize the length of the routing tables used

by the routing function. The effect of this reduction of routing infor-

mation on the message path length is evaluated. Queueing models are

developed in order to evaluate the delay-throughput performance of the

hierarchical routing policies and to compare them with present schemes.

The models prove the infeasibility of present routing procedures for

large networks and demonstrate the remarkable efficiency of hierarchical

routing schemes.

These queueing models represent an extension of Kleinrock's

model for networks in that they consider nodal storage requirements and

line overhead due to routing updates. Furthermore, several buffer

sharing schemes are proposed and analyzed in order to optimally utilize

nodal storage.

A hierarchical design methodology is also presented as a

solution for the reduction of the computational cost involved in the

topological design of large networks. A computational cost model is

developed in order to determine that clustering structure which achieves

a minimal cost. Such optimal structures are found which lead to very w

significant savings in computation.
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CHAPTER 1

INTRODUCTION

One of the main reasons for the great interest in computer net-

works is the considerable economy that can be achieved through resource

sharing [ROBE 70]. Among such resources we include computer power for

load sharing, specialized hardware, specialized software, data banks,

etc.

Such networks are called distributed computer communication net-

works and they made their first appearance with the ARPANET [HEAR 70], -..

[KLEI 70], [FRAN 70], [CARR 70], [ROBE 70].

Computer networks are also emerging as very efficient means for

data communication between remote locations. The first commercial data

carrier, TELENET, is already operational.

At the root of this booming demand for computer networks is the

ever increasing need for computer and data communication powers. It is

projected that by 1980 approximately a quarter million terminals will be

in use in Europe [EURO 73], [PETE 73] and as many as four or five million

* . in the United States [KLEI 76].

U A very important component of the network is the communication -

subnetwork. This includes the hardware and software specifically dedi-

cated to the transfer of data from node to node. Many alternative

communication schemes can be implemented at the subnet level. Among

these are: circuit switching (PORT 71], packet switching (a form of

store-and-forward communication) [KLEI 64], radio broadcasting [ABRA 70],

i- .1



satellite communication [LAM 74], or any combination of the above, etc.

work The selection of the best scheme is a difficult problem and

depends very much on the nature of the traffic to be handled by the net- -

wok[CLOSS 72A, 72B], [MIYA 75]. The bursty nature of computer traffic,

as well as the continuously decreasing cost of computer hardware

[ROBE 74], very much favor the packet switching as the technology for us

to consider.

The basic concepts and the first packet switching computer net-

work were developed by the United States Department of Defense Advanced U

Research Projects Agency (ARPA). This network (ARPANET), in operation

since 1969, has been an enormously successful demonstration of the

* packet switching technique. It has resulted in the appearance of a

multitude of other networks throughout the world (the NPL network in

England, CYCLADES in France, etc.).

Present computer networks may be characterized as small to

*moderate sized networks (57 nodes for the ARPANET as of December 1975).

The predictions mentioned above indicate that, in fact, large networks

of the order of hundreds (or even possibly thousands) of nodes are

iminent.

In the course of developing the ARPA network, a design method-

ology has evolved which is quite suitable for the efficient design of

small and moderate sized networks [FRAN 72], [GERL 73A] . Unfortunately

th cost of conducting the design is prohibitive if these same tech-

S niques are extrapolated to the large network case. Indeed, not only

does the cost of design grow exponentially with the network size, but

also the cost of a straightforward adaptive routing procedure becomes

2



prohibitive. Other design and operational procedures (techniques) must

be found which handle the large network case and such techniques form

the subject of this dissertation.

1.1 Routing for Packet-Switching Networks

In a packet switching network, messages are partitioned into

segments called packets which then are transmitted through the network

using the store-and-forward switching. That is, a packet traveling from

source S to destination D is received and "stored" in queue at any inter-

mediate node K while awaiting transmission, and is then sent "forward"

to node P, the next node on the route from S to D, when channel (K,P)

permits.

The selection of the next node P is made by a well-defined

decision rule referred to as the routing policy. Several classification

schemes have been devised to characterize routing policies [KLEI 64],

[FULT 72], [GERL 73B], [MCCO 75], [MCQU 74]. Generally speaking, routing

policies may be divided into two main classes: deterministic and adap-

tive. While deterministic routing is more attractive to use at the

design phase, adaptive policies are essential for the operation of the

network. A main objective of this dissertation is to specify and

evaluate adaptive routing policies for large networks.

The major goal of adaptive routing policies is to sense changes

in the traffic distribution and network status and then to route messages '

such that the conjested and damaged areas of the network are avoided.

As a consequence, they adjust to load fluctuations and node or branch

failures. The most commonly used adaptive policies base their decision

3
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on routing information (delay estimate, excess capacity estimate, hop

* number estimate) stored in tables at each node of the network. These

tables identify the output line to select for each destination in the

* network. They are updated periodically or asynchronously, or a com-

* bination of both, using routing information collected internally (at

each node) and/or provided from neighboring nodes.

For large computer networks (on the order of many thousands of

nodes or more), the length of the routing table (which directs the traf-

fic through each node) will grow lineraly (one entry per node) with the

* number of nodes, and therefore the storage required to contain this list

in each node will be extremely costly. Also, as a direct consequence of

these large table lengths, the cost of interchanging routing information

* among the network nodes will also grow and will represent a significant

* burden on the communication lines themselves. All these considerations

suggest that a reduction of routing table length of some sort is called

for.

The main idea in reducing the table length is to provide at any

node's (say i) routing table, one entry per destination node for those

* nodes which are close to i (in terms of a hop distance or some nearness

measure) and one entry per set of nodes for those nodes located further

away from i. The size of this set may increase with the (average) dis-

tance from i to the set of nodes. This partitioning of nodes into sets

may be realized through a hierarchical clustering of the nodes. Consider

* a large distributed network and assume that we can realize the grouping

of nodes into clusters, clusters into superclusters, etc. Indeed, let us

assume that there is to be an i-level hierarchy. Provided such a

4



clustering structure, a routing table at any node (say i) will contain

an entry for each node in the same cluster as i, and an entry per clus-

ter in the same supercluster as i, etc., thus achieving a reduction of

routing information.

It is such a scheme that we intend to define, analyze, and dis-

cuss. Fultz [FULT 72], McQuillan [MGQU 74] and others proposed similar -

schemes but did not provide any quantitative or experimental analysis

as we do here. "

1.2 The Design of Computer Networks

In our previous considerations, we were given a large distrib-

uted computer communication network and the problem was to devise an

appropriate adaptive routing scheme which would operate efficiently with

a fairly small amount of routing information. Now, going one step back,

we are interested in designing the topology of a large network under " g

* some cost and performance constraints.

Several different formulations of the design problem related to --

the communication subnetwork can be found in the literature [FRAN 72], 0

[GERL 73A]. Generally they correspond to different choices of perfor-

mance measures, design variables and constraints. Here, we select the

following very general formulations.

Given: Node locations

Channel capacity options

Minimize: Total communication cost --

I w

5J



Over: Topology

Channel capacities

Routing policies

Subject to: Delay constraint

Reliability constraint

Traffic requirement

Along those formulations, several solutions have been proposed and

applied to ARPA-like network designs. However, for networks with more

than a few hund-red nodes, we recognized that present procedures become

prohibitively expensive because of the large amount of computer time and

storage needed to perform the optimization step. Design procedures, U

based also on a hierarchical clustering of the network nodes, have been

* proposed [FRAN 73], [GERL 73B] [COVI 74] to substantially reduce the

design cost. Again consider a set of nodes, initially not connected and

assume that we wish to cluster the nodes into groups which themselves

will be clustered into higher level groups, and so on up to a specified

number of hierarchical levels. Once the hierarchical classes are de-

* fined, then the previously developed network design techniques for

* moderate sized networks may be used to design each cluster level separ-

ately.

Several questions arise as to the optimal clustering structure,

the decomposition of the global performance variables and requirements

which then lead to a set of smaller design problems. Frank and others

[FRAN 72], [FRAN 73] showed from a feasibility study of a 1000 node

* network that indeed, hierarchical structures are desirable for the design

of large networks. They also posed the samte questions concerning the
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clustering struicture, but failed to answer them for the general case of

an arbitrary number of hierarchical levels. Such questions will be

addressed in this dissertation.

1.3 Summary of Results

The above considerations demonstrate the need for some new

design and operational (routing) procedures for the large network case.

They also suggest that methods based on some sort of decomposition

scheme appear to be desirable for both the routing and the design of-

large networks.

The goal of this dissertation is twofold. First, we develop

analytic models with which we can predict and optimize the performance

of a hierarchical routing in large distributed networks. Second, we

define and optimally specify the decomposition step in a hierarchical

design of large networks.

Chapter 2 spiaiyconcerned with the introduction of the

hierarchical routing schemes and their underlying hierarchical clustering

structure as solutions to the reduction of the routing information and

* its associated overhead. An optimal clustering structure is found to

minimize the length of the routing table and consequently it results in

a minimum cost routing scheme. Enormous gains can be achieved whereby

- the table length may be reduced from N (N =number of nodes) to e ln N.

* However, a shortcoming of the reduction in routing information is the

increase in the path length of a message in the network.

In Chapter 3, we examine the effect of hierarchical routing onK network path length. Bounds are derived to evaluate the maximum increase

7
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in path length for a given table reduction. The bounds demonstrate a

major result; in the limit of a very large network, enormous table re-

duction may be achieved with no significant increase in network path

length.

The reduction in table length means that more channel capacity

and storage are available for the transmission of data traffic in the I

network. However, this gain in communication power may have to be

partially or completely paid back to handle the excess traffic caused by

longer network paths.

In Chapter 4, we address the above issue. In particular, we

* are interested in the trading relations among the table reduction, the

nodal storage, the channel capacity, the network size, the throughput

and the delay. Several queueing models are developed to capture and

exhibit the interrelationships among these variables. The models demon- . .

strate that for some reasonable cost and performance constraints, and O

for a class of symmetrical and distributed networks, routing procedures

under their present form (non-hierarchical) become infeasible for a net-

work size beyond some "critical" value; on the other hand, hierarchical

routing with an optimally selected table length, preserves a remarkably

good network performance for a phenomenal range of the network sizes.

The particular numerical examples show that the transition point where 0

hierarchical routing becomes certainly better than a non-hierarchical

one occurs for a network size between 100 and 200 nodes.

The queueing models developed in this chapter represent, in a t

major part, an extension of Kleinrock's model for networks [KLEI 64].

They provide us with some new results concerning the effect of updates

8



and storage on network performance.

In Chapter 5 we address the following two issues: (i) the

assignment of nodes to clusters, clusters to superclusters, etc., given

an arbitrary network and clustering structure; (ii) the evaluation of

hierarchical routing as applied to a more general network environment

such as the ARPANET. In this chapter we mainly lay the framework and

introduce a methodology in defining nearness measures between pairs of

nodes. A clustering technique (Complete Linkage Method) has been modi-

fied in order to fit the constraints of our specific network environment.

The nearness measures and the clustering technique are utilized to

achieve the clustering of the June 1973 ARPANET.

6 Furthermore, the simulation of a 64-node torus net confirms our

theoretic results and shows that even for such a moderate sized network,

an appropriately selected hierarchical routing begins to exhibit improve-

ments in network performance as compared to a non-hierarchical scheme.

In Chapter 6 we address some issues related to the hierarchical

design of large networks. The emphasis is on the determination of a

clustering structure to be used in the design phase and which minimizes

* the computational cost of the design. Such a cost is assumed to grow

exponentially with the number of nodes in the subnet to be designed. We

present optimum results both for the number of clusters, superclusters,

etc., and the number of hierarchical levels when the same design strategy

(technology) is considered at all levels. Optimal clustering structures

are also determined when different design strategies are considered,-

provided that the number of levels is given. An expression of the

average delay of a message in such a hierarchical network is also

9
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provided in terms of the average delays in the layer subnets composing

the network. This decomposition should consequently lead to the design

of smaller subnetworks for which we can utilize present design strategies.

In Chapter 7 we give some concluding remarks and suggest topics

for further research.

Some intermediary, but general, results were required which

*proved to be quite useful in the analytic performance evaluation of

* hierarchical routing in large networks (Chaper 4). These results form

the object of Appendixes A and B.

In Appendix A we derive a closed form expression for the average

shortest path length in grid-type networks. Also the distribution and

the corresponding z-transform of path lengths in a torus network are 4
defined and determined.

In Appendix B we coitsider various schemes for sharing a pool of

buffers among a set of communication channels in a single network node

environment [KAMV 76]. Severa.. sharing schemes are examined and the

results of the analysis are presented and displayed in a fashion which

permits one to establish the tradeoffs among blocking probability,

utilization, throughput and delay. The study shows that no one scheme

is always optimal, and that the selection of a particular scheme should

fit the particular application considered. In general, we find under

normal operating conditions that sharing, with some restrictions on the

contention of space, is certainly desirable, especially when little

U storage is available.

In Appendix C we present some proofs and complementary results

for Chapter 6.
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Even though this research addressed some design issues which

arise in large computer communication networks, the methodology devel-

oped may be applicable to more general and large systems. In particular 5

we mention a possible application to packet-radio networks, where clus-

tering of terminals in groups may alleviate some of the difficulties

encountered in performing the routing function.

In summary, we list below the major contributions of this

research.

(1) We characterize and evaluate the performance of hierar-

chical routing for large packet switched computer networks; models are

developed to determine clustering structures which lead to a minimal

O routing cost (storage, capacity) and their effect on the network path

length. More importantly, we can determine the effect of table reduc-

tion in terms of network throughput and delay. As a result, we are able

to demonstrate that hierarchical routing is remarkably efficient (in

fact, necessary) for large distributed networks.

(2) A general methodology is specified for the design of

large hierarchical networks. A model is developed to determine a parti-

tioning structure so as to minimize the computational cost involved in

the design of such networks.

(3) Models are developed to study the effect of storage in a

single node and in a network environment. Several storage sharing

schemes are specified and analyzed in order to make best use of such a

rresource (storage).
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CHAPTER 2

HIERARCHICAL ROUTING PROCEDURES

FOR LARGE COMPUTER NETWORKS

The most commonly used distributed adaptive routing policies

base their decisions on routing information (delay, hop numbers)

stored in tables at each node of the network. These tables identify

* the output line to select for each destination in the network. They

* are also regularly updated using routing information collected inter-

* nally (at each node) and/or provided from neighboring nodes.

* For ]arge computer networks, on the order of many thousands of

nodes, the routing information may become excessively costly in terms

of nodal storage required to keep the tables, CPU time needed to per-

* form the updates, and channel utilization incurred by the exchange of

routing information. These considerations make current adaptive

routing policies unattractive for large networks.

In this chapter, first, we will review the important aspects of

adaptive routing procedures for computer networks, then we will discuss -

general problems associated with the impact of the network's size on

those procedures. Next, routing schemes, based on hierarchical parti-
0

tioning of the network, are presented as a solution for reducing the

amount of routing information and the associated overhead. The focus

of this chapter is to determine the clustering (partitioning) structure

which results in a minimum amount of routing information and, conse-

quently, in a minimum cost routing scheme. Unfortunately, the gains

obtained from such schemes are accompanied with an increase in the path

12



length of a message in the network which results in a degradation of

performance. This issue will be the object of the next chapter.

2.1 Important Aspects of Adaptive Routing Schemes

2.1.1 The Routing Problem in Networks

In a packet switching network, message% are partitioned into

smaller segments called packets which then are transmitted through

the network using the store-and-forward technique. That is, a packet

traveling from source S to destination D is received and "stored" in

queue at any intermediate node K, while awaiting transmission, and is

then sent "forward" to node P, the next node on the route from S to D,

when channel (K,P) permits [KLEI 64], [FULT 72], [KAHN 72], [MCQU 74]

[KLEI 76].
"0

The selection of the next node, P, is made by a well-defined

decision rule referred to as the routing policy. Routing policies may

be divided into two main classes: deterministic and adaptive [GERL 73C],

[FULT 72]. A deterministic policy is time invariant. It may be

selected to provide the optimal routing for a network in steady state,

which has a given traffic requirement governed by a certain probabil-

istic distribution (see Chapter 6 for more details), and under the

assumptions that no failures can occur. The optimal policy may be

determined analytically [FRAT 73] and, therefore, it is attractive to

use it in the design phase [GERL 73A]. An adaptive policy is time

varying and bases its decision on some measure of the observed traffic.

It can adjust to load fluctuations and node or branch failures. For

13



such a reason it is more attractive for real network operation than

a deterministic policy. However, the performance evaluation of an

adaptive policy requires time-consuming simulations, which makes it

inadequate for use in the network design phase.

2

2.1.2 Adaptive Routing Policies

The major goal of an adaptive routing procedure is to sense

changes in the traffic distribution and network status and then to

route messages such that the congested areas of the network are avoided. '0

It is very important for those procedures to adapt to line and node

failures in order to maintain a good grade of service for the network.

6 Such policies base their decisions on the measured values, at given

times, of a set of time varying variables (number of messages enqueued,

number of hops, etc.) which describe the salient features of the state

of the network (traffic, topology, etc.). Such information is referred

to as routing information. A central node could provide the routing

information (centralized control) and distribute it to all the nodes

in the network, or the nodes could collaborate in computing the

routing information directly (distributed control) [KLEI 64], [FULT 72],

[KAHN 72].

Specifically, routing information is stored in tables at each

node and is used to identify the output line for each destination.

More detailed classifications of the routing policies can be found in

[FULT 72], [GERL 73C] and [MCQU 74]. In this study, we limit our

considerations to the distributed routing policies which base their

decisions on routing information contained in routing tables

14
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individually maintained at each node. The tables are updated peri-

odically or asynchronously or a combination of both [FULT 72] using

routing information collected internally and provided from neighboring ~

nodes. Such a scheme is used to operate the ARPANET [MCQU 74].

Typically, in a network with N nodes, each node ("IMP" in the

ARPANET terminology) i, (i = 1, 2, ... , N), has a routing table (to be

denoted by RT) which is composed of N entries. Each entry, say k, is

subdivided into three (or more) fields. The "delay" field indicates

the estimated minimal delay from node i to node k. The "next-node" -

field indicates the next node a message must be forwarded to on its

way to node k, using the '"minimal" delay path. The "hop" field rep-

resents the minimum number of line hops to node k. The purpose of the

hop-field is to allow the detection of line or node failures in the

network.

Each node periodically (i.e., every .64 sec in the ARPANET, AN

* for a heavily loaded 50 kilobit line) sends to and receives update

* messages from neighboring nodes; these updates are not synchronized

among nodes. Upon reception of an update, a node updates its own

routing table, using the delays measured on its output lines and the

* delay information found in the update message. An example of an up-

dating rule is provided in Chapter 5 and is used in a program developed

to simulate computer networks.

To summarize, let us say that, fundamental to the operation of

the distributed adaptive routing schemes is the storage, the propa-

gation and the updating of routing tables. Also, it is important to

* note that in such schemes, the routing tables must contain a number of
-
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* entries equal to the number of nodes in the network.

For large distributed networks, on the order of hundreds or

thousands of nodes, the adaptive routing policies in their present form 4

become unsuitable. This comes about for the following reasons:

i. The excessive amount of storage required at each node

to store the routing tables will substantially reduce the storage avail-

* able for other functions such as store-and-forward, flow control and

reassembly functions. Either that or extra nodal cost is incurred if

more storage must be provided. -

ii. The large CPU overhead required for the maintenance of

* the routing tables (frequent computations of the best routes) will

induce either large delays in the forwarding of messages or higher

nodal cost for faster CPU's.

iii. If no added capacity is provided, the channel capacity

required for the transmission of the routing messages could become so

demanding as to significantly reduce the throughput (load carried) of

* the network.

iv. The large delays incurred in the propagation of the

* routing information throughout the network will reduce the degree of

* adaptability of the routing scheme to changes in the network. In order

* to maintain a good response time in avoiding congested areas it is

necessary to increase the rate of updates which, consequently, will

require more CPU and channel capacity.

IIn view of the above considerations, routing schemes based on

*a hierarchical clustering of the network are proposed as solutions to

keep the amount of routing information, hence the storage, the CPU and

16
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the line overhead associated with it, within reasonable limits without

deteriorating the performance of the network. With respect to (iv),

because of the smaller routing tables, it is possible to increase the

update rate without much extra cost. Fultz [FULT 721 and McQuillan

[MCQU 74] proposed similar schemes but did not provide any quantitative

analysis.

2.2 in-level Hierarchical Routing (MH-R) Schemes

Because of the underlying hierarchical partitioning of the net-

work, these schemes are referred to as the NIHR schemes.

The main idea in reducing the table length (routing information)

is to keep at any node, say i, complete routing information about nodes

which are close to i (in terms of a hop distance or some nearness

measure), and lesser information about nodes located further away from

i. This can be realized by providing one entry per destination for

the closer nodes, and one entry per set of destinations for the remote

nodes. The size of this set may increase with the (average) distance

from i to the nodes in the set. A similar concept underlies the

mechanisms of large information systems with pyramidal structures,

in which information is more and more aggregated as we move up to the

higher levels in the hierarchical organization. Aggregation of infor-T

* . mation or variables is commonly introduced when dealing with large

systems [MESA 70], [CHUR 68], [SCHO 71].

For the routing in large nets, the aggregation of the routing 7771

information is achieved through a hierarchical partitioning of the

network. Basically, an rn-level hierarchical clustering (MHC) of a set

17



of nodes consists of grouping the nodes (which we shall define as 0 th

level clusters) into 1st level clusters, which in turn are grouped into

2n d level clusters, etc. This operation continues in a bottom up

nd stfashion until the grouping of the m-2 level clusters into m-l level

th thclusters whose union constitute the mth level cluster. The m level

cluster is the highest level cluster and as such it includes all the

nodes of the network. The M-C will be described more formally in

Section 2.3.1.

Since MHR schemes are based on an m-level hierarchical cluster-

ing of the nodes of the network, only one entry in the routing table,

at any node, say i, is provided for each node in the same 1st level

clusters as i, and for each Ist level cluster (set of nodes) in the

nd stsame 2 level cluster as i, and in general for each k-l level

thcluster in the same k level cluster as i (k = 1, 2., ..., m). The

structure of this scheme can be best understood by an example. Fig. 2.1

shows a 3-level hierarchical clustering imposed on a 24 node network.

The clustering leads to the tree representation shown in Fig. 2.2, where

nodes are identified using the Dewey notation [KNUT 69]. To each node

is now associated a reduced routing table. Fig. 2.3 shows the entries

of node 1.1.1's routing table; the number of entries is now 10 instead

of 24 without clustering. As an example, the routing of a packet from 0

node 1.1.1 to node 3.2.2 may proceed as follows: Node 1.1.1 recognizes

from the address of the destination node, 3.2.2, that it has to use entry

3, of the 2n d level cluster entries, to decide upon the next node to

which the packet must be forwarded. When the packet reaches a node, say

nd3.1.1, in the 2 level cluster 3, then that node will in turn use the

18
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second entry among the 1st level cluster entries. Finally, when the

packet enters the destination cluster, 3.2, the routing will be done .2
using the 0t h level cluster entry number 2. Notice that it was assumed

that the ?4C results in connected subgraphs.

From the above considerations, the following problems must be

resolved at the outset:

i. The determination of an appropriate clustering structure,

i.e., the size of the clusters at all levels and the number of levels

ii. The definition of an aggregate routing variable for the

clusters at all levels; the specification of new updating rules, if

necessary

- iii. The assignment of the nodes (0 level clusters) to 1s

1st lvlndlevel clusters, 1 level clusters to 2 level clusters, etc.

The rest of this chapter will focus on (i). (ii) and (iii)

are respectively treated in Chapters 3 and 5. 4

Finally, it is also necessary to evaluate the performance of

the MHR schemes as compared with the present non-clustered schemes.

This question will be examined in various ways in Chapters 3, 4, and S.

2.3 Minimum Routing Information

The hierarchical ?artitioning of the network has as an objective

the reduction of the size of the routing table. It is then important

to determine the specific clustering structure (cluster sizes, number

of levels) that will result in a minimum table length. The optimal

sizes found will serve as the input parameters to the clustering tech-

niques (see Chapter 5) whose function is to assign nodes to clusters,
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clusters to superclusters, etc. In what follows, we will introduce the

tree representation for the ?HC and formally pose the problem of find-

ing an optimal clustering structure. We will then proceed with the -.

derivation of the optimal solution and the study of its characteristics.

2.3.1 Tree Representation for the MIC and Problem Statement

Any hierarchical classification scheme lends itself to a tree

representation [KNUT 69]. The tree structure has already been intro-

duced in Fig. 2.2, to represent the 3-level hierarchical clustering of V

the 24-node network in Fig. 2.1. The representation of an m-level

hierarchical clustering is shown in Fig. 2.4.

2.3.1.1 Notation and Definitions

Definitions:

A kth level cluster, Ck is defined recursively as a set of

k-lst level clusters. It corresponds to a node at level k, in the tree

representation of Fig. 2.4.

A k th level cluster is identified, similar to the Dewey notation

[KNUT 69], by a vector of predecessors, ik+1 = (ir, i
m M-l' k+l)

which can subsequently serve as an address of Ck. Th index, im,

d indicates the m-lst level Cluster, say C ml(i m), to which Ck belongs;.

nd
i_ indicates the m-2 level cluster in C 1 (im) to which C belongs;

etc. The notation, C(im -ik+l) or Ck(ik+l), will be used

4 when there is a need to identify Ck.

Notice that a leaf in the tree representation corresponds to a

node (0 th level cluster) in the network, and to any node is associated

22
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Figure 2.4. Tree Structure of the Hierarchical Clustering.
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an address vector i which will be used for the routing of messages.

thThe degree of a k level cluster, C, is defined as the number

of k-1 s t level clusters included in Ck. It also indicates the downward B

degree of the corresponding node in the tree.

Notation and further definitions

RT = Routing Table

MHC = m-level Hierarchical Clustering

MHR = m-level Hierarchical Routing 2
S Set of nodes in the network

N = size of the above set

m = number of levels in the hierarchy

Ck = k level cluster, represented by a node

at level k in the tree structure

CO = 0 th level cluster, network node

1k+l = (imi-l' "'' ik+l) = vector of predecessors

Ck(,k+l) = Ck(i,.., i k+l)=completely identified kth .1
level cluster

nk(ik+l) = nk (i, ... , ik+l) = degree of the above cluster

nm degree of the in level cluster - (root of tree)

i nkck)} vector of degrees of all kth

-k+l level clusters

A E, 2 2 ... ,o nm) degree vector

2.3.1.2 Expressions for the length of the Routing Table and the Size -

Cons train t

The summation of the degrees of all the I t level clusters]

24
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~-=0

gives the total number of nodes in the network (i.e., the total number

of leaves in the tree structure, Fig. 2.4). Hence

nm n (im ,  • k+ ) n2 ( m  5I*' k = ***2M

Ni2 c1= ni~im, ... , i2) (2.1)i=

Eq. (2.1) will generally serve as a constraint over the choice of the

optimal degree vector ,, and it will be referred to as the size

cons traint. -

Let E[C 0(j 1)] be the length of the RT at node C0(il); it is

defined as the number of entries in that table. Then

m

Z[C 0 (1A ]k(i, . k+l)  (2.2)

The assumption is: each node of the network, C0 (il), contains an RT
st th

with an entry for each k-lst level cluster in the same k level cluster

as C0 Q) (there are nk(ifh ... , ik+ I) such entries), and this for

k 1 1, 2, ... , .

In order to simplify the manipulation of the RT's, we will 6

also assume that equal length tables are provided at all nodes. Con-

sequently, if £ is that length, it must accomodate the number of entries

in the RT of any node. -1

Hence

1(m, n) max n M_(23

Over all k nk Om' l " k+l} (2.3)
nodes ..
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2.3.1.3 Problem Statement

given N

minimize i(m, n) [see Eq. (2.3)]

over: m and~ (24

subject to :size constraint [see Eq. (2.1)]

m a positive integer variable

na vector of positive integer variables

2.3.2 Real-Valued Solution of the Optimization Problem

We proceed to first solve Problem 2.4, with the assumption that

Sis a real valued vector. This is in order to obtain an explicit

analytical expression for the optimal solution. As a consequence of

this assumption, a summation of the type n n(i) becomes meaningless

if n2 is not at it~teger, unless all the n (i )Is are equal (to n) then

the summation becomes, n n. In fact, the solution of the optimization

problem will show that clusters of the same level must be of equal

degree, hence, all the summations in Eq. (2.1) will become meaningful

a posteriori.

2.3.2.1 Optimality for a fixed m

Proposition 2.1

Given m, the number of levels in the hierarchy, and assuming

that n is a real valued vector, the solution of Problem 2.4 is such

that:

lo
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(a) All clusters at all levels, k = 1, ... , m, are composed

of the same number of lower level clusters,

n k i m , .. , ik+l) n k (im ,  . ik+l) aodk a k

(2.S)

nk  N k 1, 2, ...,m

(b) With this optimum assignment the minimum table length is

T(m) = MNl/m (2.6)

Proof:

The proof proceeds by induction on the number of levels, m.

First, we start by showing that Proposition 2.1 is true for

For m ._2, the problem becomes:k-

min : max {nl(i 2 ) + n
over i

1:5i !5n2 2

over : n= {n,(i 2 )j. n2  (2.7)
2

s.t. : i 1= n(i 2 ) = N

2

nI n2 positive.

The formulation above is equivalent to
m in :

over : n, n, n2 (2.8)

s.t. n n (i 2 ) + n 2  V~i 2 = 1, ,. n

n 2

1 n1 (i 2) = N al' n2 positive

27



Let n2 be fixed. Then, summing the first constraint in Problem 2.8,

with respect to n Pwe find

n

22

If n is feasible, i.e., if it satisfies Eq. (2.1), then Eq. (2.9) 4

becomes

n N + feasible.

The above equation provides a lower bound on the optimal solution for a

fixed n 2* Consequently, if a feasible solution achieves that lower -

bound, then it must be optimal. Such a solution is

n11(12 - i=1, 2, .... n1 (2.10)

If we now let n2be a variable, the problem reduces to

Smi n = L+ n2 0
"2

over 11219 n2 0

whose optimum is acivdfrn2 =N 12which, combined with Eq. (2.10)S

proves that Proposition 2.1 is true for m =2.

Assuming that Proposition 2.1 is true for up to m -1 levels,

let us show that it is true for m levels. The size constraint,

Eq. (2.1), is equivalent to the following set of constraints: :
28



nm_l (im )  n2(, ..., 13)
m~ "'" x; nl(i 3, "' 2 = pU = , ..., nlilim .. =I'm i2m nm
M1 2-

(2.11) - ]

mp(i N (2.12)

Let us fix the variables na and p(im), im = I ..., nm, such that

Eq. (2.12) is satisfied. Problem 2.4 becomes decomposable into n

subproblems, corresponding each to a given value of the index i . Such &.4

a subproblem, for a given im, is

ml(rin: max nma + E n k(im, 'm-1, .. 12)over all nodes k=l "Im

in same m-1s t
level cluster Cm(i

: ~~~over: nln2"' n- ,-:: !!2' **' m-l

s.t.: Eq. (2.11) must be satisfied.

From the induction hypothesis, the solution .of the above problem is

such that

M1

nk(m ' . = l)I m -  (im,  .I  ... ,ik+ I)

i m fixed, and

#k = 1, 2, ..., m-I

(2.13)

with such an assignment the minimum objective is equal to

1

Cm- 1)[p(i AmM-1 +

a a

29
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If we now let the pCi )'s be variable but we keep nm fixed, the problem

becomes

min: max nm (

m mI over: PCim)

s.t.: Eq. (2.12) must be satisfied

The above problem is similar to Problem 2.7; hence, for a fixed nM A

the solution

pCi ) i = 1, ... ,n (2.14)
m n m mm

is optimal. Consequently, we are left with
*, 1 i

M-1

m

over n, n > 0

Differentiating £ with respect to n we find

1

= 1- Nm-1 (n )-m/m-1

m

From the above equation, we determine that Z is minimum for

n = Nl/m (2.15) "

and the minimum value of Z is

- Al/m (2.16)
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Substituting Eq. (2.15) into Eq. (2.14), then Eq. (2.14) into Eq. (2.13)

we arrive at Eq. (2.5). Also, Eq. (2.16) is exactly equal to Eq. (2.6)

Q.E.D. -,W-

2.3.2.2 Global Optimality

So far we have solved for the optimal clustering when m, the

number of levels is fixed. We now intend to let m vary and conse-

quently solve for the global optimum. In other words, we intend to

solve Problem 2.4 in its entirety except that the components of the

degree vector n and the number of levels m, are assumed to be real

variables.

Proposition 2.2

Under the conditions of Proposition 2.1 and m being a real

variable, the global optim clustering is achieved for a number of

levels

M= In N (2.17)

and a degree vector n*

n= e = 2.718... k = 1, 2, . m. (2.18)

The corresponding minimum table length is

R, e In N (2.19)

Proof:

Proposition 2.1 gave us the optimal clustering, for a fixed m.

Consequently we are left with the minimization of T(m), Eq. (2.6), with

respect to m. Differentiating Eq. (2.6) with respect to m, we find
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*i

d2.(n) (~Ifln N) N1/rn

The above equation shows that T(m) is minimum for m as given in Eq.

(2.17). Substituting Eq. (2.17) into Eqs. (2.S) and (2.6), we arrive

at Eqs. (2.18) and (2.19).

2.3.2.3 Duality

A simpler formulation of problem 2.6 may be obtained by directly

imposing that all kth level clusters are of equal degree, nk

(k = 1, ... , n). Hence Problem 2.6 becomes

*6 given: N
m

min: I= E nk
k=1

over: n (n, ... , n), m (2.20)

m
s.t.: nk = N

k=l

n, m positive integer valued.

It can be (directly) shown by induction, that the real valued solution

of the above problem verifies Propositions 2.1 and 2.2.

The dual formulation of Problem 2.20 is

given: t.

m
max: N = fi nk

i=l

over: n, m (2.21)
m

s.t.: nk=£
k=l

n, m positive interger valued.

3
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The objective, in the formulation above, is to find the maximum number

of nodes, N , such that there exists an MHC whose application results

in a routing table of length I. The dual propositions to 2.1 and 2.2 -.

are respectively,

Proposition 2.3

For a fixed m and 1, the real valued solution of Problem 2.21

is such that

nk  k 1 , 2, .,s..0

with this assignment

N (Lm

Proposition 2.4

The real valued global optimum of Problem 2.21 is such that

Se k =1, *..,

N* e£ / e

Proposition 2.3 can be directly proven by induction on the

number of levels in the hierarchy. Proposition 2.4 is a direct con-

sequence of Proposition 2.3.

2.3.2.6 Numerical examples

Figs. 2.5 and 2.6, respectively, illustrate the behavior of

tE/N and /,E9.t (see Eqs. (2.6) and (2.19) with respect to m and for

several values of N. The plots exhibit a flat area around the minimum.
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They also show an initial fast decrease of T toward a value close to

the minimum. This last property is better-illustrated in Fig. 2.7

where XIN is plotted with respect to N for ms { l, 2, ... , ln NJ

*this indicates that most of the table reduction can be obtained with

hierarchical clustering whose numbder of levels is quite a bit smaller

than m, (Eq. (2.17)).

2.3.3 Integer Solution

In this paragraph we intend to solve the integer optimization-

* problem as formulated in 2.20, except for the size constraint which is

changed to an inequality, the problem becomes

min: n

k= 1

fesileses f ecovr , fo someg value fmd N.2.sluio2)

such ~ ~ ~ S~. tha nin > N, nyipista h ereo n t ee
k=k=1

This mboen thdfatio her witbeouused etriesoin sean ofith emrotin

Resb ecl hats ovethes gloa otmum eal lueomad N solution snc

suthat ll th onn t ks ar Nol mlequa tohat therefe iny th ineer

k=
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Proposition 2.S

There exists a global optimum vector n* which is composed of

zero, one or two components equal to 2, with all the others equal to

3.

Proof

The idea is that any number (component of n) or set of numbers

can be replaced by a set of 2's or 3's which results in the same sum

but a higher product. Hence the new set is at least as good as the

original. As an example, we list typical transformations. .149

Original Original New
Numbers Transformation Sum Product Product

4 2, 2 4 4 4

5 2, 3 S 5 6

6 3, 3 6 6 9

7 2, 2,3 7 7 12

2, 2,2 3, 3 6 8 9

Let us now proceed with the proof by showing that we can always

derive from an optimal solution which does not satisfy Proposition 2.S,

one which does. Let n*, m* be a solution which does not satisfy Prop-

osition 2.5; then, at least one of the following conditions is true:

* (1) at least one component is equal to 1, (2) at least one component

is greater than 3, finally (3) at least three components are equal to

2.

* With respect to (1) let us prove by contradiction that this

situation cannot occur. Assume that n =1, then consider the

1This idea was suggested by Dr. D. Cantor, Mathematics Department,

UCLA.

*7--
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1l

vector n' composed of the other m, - 1 components of n,, i.e.,

ni nk  k = , . .,m*

m, -1 m=-'

consequently n n=k nk " 1

and m*-  m*

k k=l

Hence ' is a feasible vector which results in a better objective;

that is a contradiction.

With respect to (2), assume first that nM > S, then consider

the vector a' composed of m, + 1 elements which are such that

U n k k 1, m, 1

n n 3. .

With the above transformation the objective function is obviously un-

changed. The product is such that

n'n .+i =m 1 2n - 10

hence n n n' >n + 1'M* ~M*M*+l - M*

\+l kl . ""
- i kk- i / - -.

which means that n' is also feasible, hence optimal.

If n = 4 then we choose n' a n'm = 2 and still obtain

a feasible vector a'. The above operations can be repeated several

times on the constructed vectors n' in order to transform all the

39
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components which are greater than 3.

With respect to (3), assume that nm.-2 = n = nm = 2;

then consider the vector n' composed of m, - 1 elements which are such

that,

= nk k=1,..., m, -3

n' =n' 3

2 M*

With the above transformation the objective fuction is unchanged. The

product of the components is increased by 1. As a result n' is also U

feasible, hence optimal.

The above operation can be repeated several times on the con-

structed vectors n', until we reach a solution with no more than two

2's.

Finally, we can see that the repeated application of the

transformations shown for (2) and (3) will eventually generate a vector

n' which satisfies Proposition 2.5.

As a consequence of Proposition 2.5 the search for the optimal

number of levels is reduced to three possibilities. From Problem 2.22, 6

the optimal m, must be such that

3 m'-x 2 x > N

where x e {O, 1, 2}

Hence, the three possible values of m are:

1. xi 0 > m0 = lN3W

FIn N/2]
2.xx > I = 1 1-mI 3

3. x 2-> = in N 2
I2 in 3 2

40
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Finally the optimal m, m, , is the solution of

min: I 3n- x

lover (mox) {(mO, 0), (ml, 1), (m2,2)1

Notice that the optimal pair (m,x) gives the composition of the optimal

vector n*.

Proposition 2.6

Given m, there exists an optimal vector n which is such that

no two components differ by more than 1, and which is given by,

-' n FN m 1/

= r /kl k = 2, 3, ... m (2.23) "m
- fn i

i=k+l

or any other permutation of the above solution.

Proof

Let us show that, given any two numbers which differ by more

than 1, we can replace them by exactly two numbers which do not differ

by more than 1 and which result in the same sum but in a better product.

Two cases to consider depend on whether the difference between the two

numbers is odd or even:

1/ (even), pick n and n + 2p.

Their sum is 2n + 2p.

Their product is n2 + 2pn.

Let us replace them by n p and n + p; then the sum is still the

sawe, but the product is
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n2 + 2pn + p

2
which represents an improvement of p2. A similar proof can apply for

the odd case.

From the above property, we conclude that any nk k = 1, ... , m,

is equal to a given number, either a or a + 1. If we let x represent

the number of components equal to a + 1, then the problem reduces to

mint = (m- x)a+ x(a+ 1) = ma+ x

over (a, x)

M-x x
s.t. am-X(a + 1) > N

a positive integer; x < m, positive integer.

Let us show that there exists at least one component, say nm, equal to

Nl/m. From the constraint above, the optimal a is such that

(i) x= 0 > am > N > a =[Nl/ml

(ii) x 0 -> (a + l)m> (a + l)Xam-x> N -> a + fNI/ml

Knowing that n m FNi/mi, Problem 2.22 can be reduced to m 1

variables, with N replaced by N/n From the same considerations as

above, we know that the optimal vector (nl, n ... , nm) for the new
(n,~2 m-1

problem has at least one component, say nml, equal to

[( N- 1i~

Repeating the same operation, we arrive at Eq. (2.23).

Numerical examples

Similar curves as in Fig. 2.5 are plotted in Fig. 2.8. They
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illustrate the behavior of (9,d) versus m for the integer case. They

exhibit the properties described in Section 2.3.2.4, mainly the enormous

table reduction for small values of m. By comparing Fig. 2.5 with

Fig. 2.8 we notice that the integer valued solution is extremely close

to the real-valued solution. Consequently, we will limit any further
1"

considerations to the simple real-valued solution.

Fig. 2.9 illustrates the behavior of Nd/N, where

m
N d l nk --V

k= 1

Notice that the slack in the size constraint is relatively small for

large values of N.

2.3.4 Optimality with No "Self-Entries" in the Routing Table

In the previous model, at each routing table, one entry (to be

called self-entry) is reserved for the node which contains that table,

thand one for each of the k level clusters k = 1, 2, ... , m - 1, to

which that node belongs. For some MiR schemes (e.g., those defined

in Chapter 3) and/or with some extra CPU overhead, the updating

algorithm can operate without those self-entries. Consequently, the

new length ' of the RT's is,

X,' - m (2.24)

where L is given by Eq. (2.3).

The optimal clustering structure is the solution of Problem

2.4 where 9 is replaced by '.

Real Valued Solution

For a fixed m, Eq. (2.5) still holds true. Hence the minimum
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-q

length is • l /
-

'=mN1/m" m "i_

In order to find the global optimum, let us differentiate 92 with

respect to m,

--M- 1 ln N NI1/m ":
nd4

Taking the 2nd derivative, we find

2-2
d (nN) Nl/m.
dm2 m3

2-
For m > 0, d 2

- is positive; hence - is a non-decreasing functiondm2

of n. Consequently it is not greater than its value at m = , which

* - is equal to zero. We conclude that 9' is a decreasing function of m.

- .and that it reaches its minimum 94, for m equal to infinity.

'. =limit n (N 1) In N
M )

In sunnary, the global optimum is such that

m:=+ 0 ""

L: n N:'.-:t ,, = ln N

nk =1 k>l

The above result is to be compared with Eq. (2.19),

= e I*'

which indicates that theoretically, an improvement of a fraction e

of the global minimum length can be obtained. These limiting results

are, however, meaningless in the integer case.
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LIteger Valued Solution

For a fixed m, Proposition 2.6 still holds true. As for the

global optimum the problem to solve is,

Mm rin: E nk -m
k~l-

k=1 "2-

over: n, m integer valued (2.25)

m
s.t.: r7 nk >

k= -

Recall that the real valued solution is such that

n= limit N =

Therefore we are not surprised that the following proposition holds

true.

Proposition 2.7

There exists a non-degenerate (i.e., no one component is equal

to one) global optimum vector n* which is such that

ni=2 k=1,2, ..., m, (2.26)

Fln Niand m. = 2 (2.27)

Proof

Let us first show that if n* is an optimal vector which contains

at least one component equal to 1, then the vector obtained after

deletion of all the l's is also optimal.

Assume that n 1, then consider n' such that 0

nk- nk  k=l, ... ,M,- .
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Notice that the table length and the product of the components are un-

changed. Thus n' is also feasible, hence it is optimal. The above

operation can be repeated several times until we eliminate all the -

components which are equal to one. In the sequel we restrict our con-

siderations to non-degenerate solutions (i.e., no one component is equal

to one).

Lct ust first prove this intermediary result.

Fact:

If n* is a non-degenerate optimal vector then it must be

composed of zero, one or two components equal to 3 with all the others

equal to 2.

0 Proof

The proof proceeds by contradiction. Assume that n, is a

non-degenerate optimal vector which does not satisfy the above fact.

It must be such that at least one of the following conditions is true;

(1) at least one component of n* is greater than or equal to 4; (2) at

least three components of p* are equal to 3.

With respect to (1), assume that n >4, then consider the

vector A'.

(n ff=n k - 1, 2, ... , u, - I

1 - (2.28)
n! 2 i , m.. Um + 1, ... , , m+

where m0 is such that

m0  toO+ I
* 2 < n < 2 (2.29)U. -

m*+mo mo m. l m-m*
Thus k1 n'= 2  11 nk> nk

k=l k k=l ku l
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Consequently %' is feasible. Also the objective function is
m*+Mo .- 1

n- (m* mO)= n nk + 2(mo + 1) - (no + m.).

k=1 k=1

If we subtract the above table length from the one obtained with n*,

then the difference is

A n - 0 - 2 (2.30)

If A > 0, then we reach a contradiction. Let us prove that in fact

A > 0.

i. nm, 4 -> m0 = 1=> A =1 -

ii. > 5 -> m

It can easily be shown by induction that

MO
2 > mo 1 mo 2

From Eqs. (2.29) and (2.30),

A 50  
02>2 - >A > 2 - -2>2 =mo I > 0 .

0 0

Thus A is always greater than zero, which is a contradiction.

With respect to (2), assume that

n z~ n n M=3
r*-2 mf-l m

consider the vector 0' composed of m, + 2 elements,

I nk  
k = 1 , .... m . - 3

2 k m, - 2, ... , m, + 2

It is obvious that n' is feasible and that it reduces the table length

by one, which contradicts the fact that n* is optimal. Q.E.D.
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End of Proof of Proposition 2.7

The rest of the proof is a consequence of the above fact. Let

n be a non-degenerate optimal vector. If n does not satisfy Prop- 4

* osition 2.7, then, because of the above fact, it must contain one or

two 31s. Any 3 can be replaced by two 21s, without changing the

objective function and still keeping feasibility. As a result we arrive --

at a vector composed only of 2's and for that vector to be optimal the

numbier of components must be a solution of

min: m

over: m integer

s.t.: 2m > N

The solution of the above problem is given by Eq. (2.27), which term-

* mnates the proof.

2.4 Conclusions

This chapter was primarily concerned with the introduction of

* the I'IR schemes and their underlying hierarchical clustering structure

as solutions to the reduction of the routing information and its

associated overhead. We found, indeed, that enormous gains can be *
obtained whereby the length of the routing tables may be reduced from
N entries to the order of e-ln(N) entries. However, a shortcoming of

* these gains is the increase in the path length of a message in the net-

work. This comes about from the fact that a given node must send all

its traffic to a given cluster, on the same path to that cluster. This

path will, in general, be optimal only for a subset of the nodes in the

destination cluster. Consequently, some messages will follow longer .
50P
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paths than they should. This issue will be addressed in the next

chapter.

It is also possible that less routing adaptability could result I

from the 141R schemes because of the aggregation of the routing informa-

tion. This fact may, however, be beneficial in our context of large

networks where the routing policy need not adjust to very remote and

probably short lived fluctuations.

*6 .1
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CHAPTER 3

STATIC EVALUATION OF HIERARCHICAL ROUTING:

BOUNDS ON THE INCREASE IN NETWORK PATH LENGTH

Built into the hierarchical routing, proposed in Chapter 2, is --
the reduction of routing information. As a result there will be, in

general, an increase in the network path length. The magnitude of the 1
increase is closely related to the length of the routing table and to

the choice of a specific aggregate routing variable.

In this chapter, two hierarchical routing schemes and a non-

clustered (non-hierarchical) scheme are presented, and their routes are i

characterized under some "equilibrium"' conditions. Then, with some

assumptions on the network topology and on the partitioning structure,

bounds on the increase in the network path length are derived. These

bounds are expressed and studied in terms of the relative table length 14

(XIN). They demonstrate an asymptotic result for a class of large

networks. The result shows that when the number of nodes grows to

infinity, enormous table reduction can be obtained with a relatively

* insignificant increase in the network path length.

* 3.1 Path Characteristics for Hierarchical and Non-Hierarchical

Adaptive Routing Policies

The puzpose of this section is to characterize the actual or

virtual routes obtained from the routing tables under certain equilib-

rium conditions as defined below. The routing schemes are assumed to

S belong to the class of hierarchical or non-hierarchical adaptivea
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policies, considered in Chapter 2. Such policies basically propagate

* routing information describing the length of the paths to reach any

destination node or a set of nodes. The path length is defined as the

sum of the lengths of all the channels which constitute that path.

Moreover, the length of a given channel is usally a random variable

which may reflect the utilization and/or the excess capacity and/or any -

other information which partly or entirely describes the stochastic

state of that channel. The transient nature of adaptive routing renders

the analysis of the above problem extremely complicated. In order to

make any progress we will assume that all channels are of constant

length. Ibis is a simplifying assumption which will, however, allow us

to capture the. effect of clustering on the network path length; this is

the main objective of this chapter. Morever the above assumption is an

accurate description of routing policies which are only sensitive to

changes in the network topology, and of more general policies operating

under light traffic conditions [KLEI 64]. Furthermore if all the chan-

nels are considered to be of equal length (say 1), then the routing

information is simply what we defined earlier as the hop distance. 0

Such routing information is in general utilized by routing policies to,

at least, detect changes in the network topology.

* In summary we will restrict our considerations to hierarchical

or non-hierarchical routing schemes (also referred to as clustered and

non-clustered routing schemes) which use as routing information the

* path length only. Also we consider that all channels are of constant

length. In what follows we first assume that all channels are of equal
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length (one hop) and then we generalize to arbitrary (constant) length

channels.

3.1.1 Non-Clustered Routing (NCR)

Recall that the NCR schemes operated with complete routing

information, i.e., the routing tables contain one entry per destination

node in the network. Because of the frequent exchange of routing in-

formation between neighboring nodes, the routing tables will in general

indicate the next node in the shortest path to any destination. This

is due to the fact that at each update, a node compares its own routes

to the neighbor's routes and updates its table by keeping the shorterj

routes. The above approach is in essence a dynamic search for the

minimal paths in the network [HU 69], (FRAN 71]. As a consequence,

after a certain number of updates (less than or equal to the diameter

of the network) if no changes occur in the network topology, all the

tables will indicate exactly the shortest paths. If a change in topol-

ogy occurs, then some of the paths will not be optimal during a

transitory period (time for the routing information to percolate to the

concerned areas in the network). However for the purpose of comparison

with the hierarchical routing, we will assume that the tables always

carry the shortest path information. A more formal treatment of the

above is presented within the context of the clustered schemes since,

as we will see in the sequel, a 1-level hierarchical routing is equiv-

alent to an NCR scheme. -

54



-- 4

3.1.2 Specification of the MHR Schemes

Built into the MHR schemes, considered in Chapter 2, is the

reduction of the routing information whereby one entry in a routing

table may be reserved for more than one destination node. Routing

information is aggregated whenever it is exchanged between special

nodes in different clusters at any level. Such special nodes will be

referred to as exchange nodes. Two MHR schemes will be presented below.

They differ only in the definition and subsequently the computation of

the aggregate routing information. The two schemes will be referred to

as the Closest Entry Routing (CER) and the Overall Best Routing (OBR)

schemes. In order to proceed with their description, we first need to

specify the underlying m-level hierarchical partitioning of the set of

nodes of the network.

Assumption 3.1

The underlying M4C structure of the set of network nodes is

such that all clusters at the same level k, are of equal degree,

nk9 k = 1, ..., m. Also the subset of nodes composing a cluster at

any level and their incident channels constitute a 1-connected (at

least one path exists between any pair of nodes) cluster subnetwork.

The former property of the above assumption partly satisfies 0

Proposition 2.1 which defines the optimal clustering structure that we

will eventually use. The latter property is necessary, since the traf-

fic exchanged between nodes in the same cluster must follow paths

included in that cluster's subnet.

Because of the above assumption the notation of Chapter 2
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can be greatly simplified. Particularly, the degree vector is reduced

to n = (n1 , n2, ... , nm). Moreover, if there is no need to identify

a cluster with its entire address vector, then a shorter notation, -.

such as below, can be used.

th tCkcJ) A j entry in kth level cluster entries

or t
Ck(s) A kt level clustercontaining an arbitrary node s.

As a consequence of Assumption 3.1, the routing tables at any
-w

node will have the format shown in Fig. 3.1, and will contain

= n1 + n2 + ... + n entries. Notice that self entries are included

in the routing table (RT). The self entries of the RT at an exchange

node may be assigned to carry the aggregate routing information from

one cluster to another. The content of the self entries in tables at

other nodes (non-exchange nodes) need not be specified in this study.

Two aggregation procedures, each pertaining to a particular MHR scheme

(OBR or CER), are presented below. Also, possible ways of implementing

those procedures are suggested with the assumption that neighboring

nodes exchange their RT's as routing updates (as mentioned in

Chapter 2).

Aggregation of Routing Information "1

i. With respect to the CER (Closest Entry Routing) scheme,

no routing information describing the internal behavior of a cluster

is propagated outside the cluster. With this rule, a cluster is re- W

garded from the outside as a single (super-) node whose distance to

itself is equal to zero. A way of implementing this scheme is to assign
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zero as the content of all the self entries at any RT located at an

exchange node. In other words, the distance from an exchange node to

the clusters at all levels, to which it belongs, is considered to be

equal to zero.

ii. As for the OBR (Overall Best Routing) scheme, the average

estimated distance from an exchange node to all the nodes in its cluster

(including itself) will be propagated when necessary as the aggregate

routing information relative to that cluster. A possible implemen-

tation. is, at any exchange node's RT, to assign to the hop field of the

thk level cluster self entry the average of the contents of the hop

st
fields of all the k-l level cluster entries in that RT. When re-

quired, the computation of the averages must proceed sequentially,

starting from k =1 to k =m - 1 (see Fig. 3.1). The hop field of the

0 h level cluster self entry is always set to zero. The interpretation

of the above rule is that, at any exchange node, say e, the Is levelIS

cluster self entry of the RT indicates the estimated average distance

Stfrom node e to any node in the same 1s level cluster as e, including e.

In general, the k th level cluster self entry indicates the estimated

thaverage distance (in hops) from node e to any node in the same k level

cluster as e, including e.

* Notice that the content of the self entry fields can be well

computed by the exchange node receiving the routing update or by the

one generating the update. This fact will become clear in the example

* treated right after the specification of the update rule.

Update rule

Let s and t be two neighbor nodes (i.e., they are connected
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th
by a channel (s, t)) which belong to the same k level cluster Ck and

not to any lower level cluster, (k = 1, 2, ... , m). Let Ckl(s) and

Ck_l(t) respectively denote the k-1s t level clusters to which s and t

belong. From the condition above, we know that

C~l(s) Ckl(t) c Ck and Ckl(s) n Ck 1 (t) :

As a consequence, and due to the RT organization as specified in Chap-

ter 2, the routing tables at s and t are such that all the p-level

cluster entries for p = 0, 1, ... , k - 2 refer to different cluster

destinations, whereas all the other entries refer to the same cluster

destinations.

The object of the updating procedure is to compare the esti-

mated lengths of the paths from s or t to any common destination. Then,

the routing tables are updated to show the better paths. More formally,

let

C.(i) i = 1, 2, ... , nj+l; j = k - m, ... , m - 1
J]
Ith -

denote a common (to s and t) j level cluster destination. To that

cluster is associated entry i (at both tables) among the j th level clus-

ter entries; that entry will also be denoted by C.(i) (Fig. 3,1). Also

let HF(u, C.(i)) represent the content of the hop field of entry C.(i

at node u (u = s or t). Finally, whenever node t receives an update

message from node s, then for each common destination entry Ct (i) the
J

following updating algorithm is performed.

IF HF(t, C.(i)) > 1 + HF(s, C.(i))
d (3.1)

THEN HF(t, C.(i)) -- 1 + HF(s, C.(i))

NEXT NODE FIELD OF C.(i) s END
J
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Initially all the entries are set to a large value (o), except for the

self entries. If a CER is used then all the self entries are set to

zero, and if an OBR is used then only the 0 th level cluster self entries - 6

are set to zero, e.g., at node s

HF(s, C (s)) A HF(s, s) = 0
0 --

0 CER
HF(s, Ck(S)) = k 1, ... , m- 1

SOBR

all other entries =o

Notice that in the algorithm above, it is assumed that all the routing

information contained in the non-common destination entries in node s

routing table is aggregated as specified before, to represent

HF(s, Ckl(s)). Moreover the content of the common self entries is not

relevant.

The fact that HF(s, Ck-l(s)) need only be computed for updating

purposes, makes it clear that either the sending (s) or the receiving

node (t) can perform the aggregation of routing information.

A few more remarks can be stated about the above updating rule.

i. If s and k belong to the same I level cluster, then

their RT's contain only common destination entries. As a result,

Algorithm 3.1 will be performed for all the entries in the table. -

ii. A unique "degenerate" MIR routing scheme corresponds to

either the OBR or the (MR schemes with only one hierarchical level, and

it is exactly the non-clustered scheme specified above. Moreover, for ..

such a degenerate case all the network nodes belong to the same unique

1st level cluster; hence, as expected, the updating algorithm will be

6
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performed for all the entries in the RT's.

iii. For any pair of nodes s, t, the common region in the rout-

ing tables can be determined by inspecting the address vectors of s and

t. A similar operation is required by the routing function described

later in this section.

We are now ready to treat an example which will expose the

mechanisms of updates and aggregation.

Example of update

Let us consider the 14 node network shown in Fig. 3.2.

(1.5)1 51(1.17 (2.2
I9

(1.4) 4(2)

(1.31 13(2.5) 12:

(1. 1 3 3,:'

131
~ C(111 C1121)]

Figure 3.2. A 2-Level Clustered Network.

If no clustering is considered then each node contains a 14-entry rout- !

w
4 ing table. Numbers from 1 to 14 are assigned to the nodes to serve as

addresses (shown on the right of each node in Fig. 3.2). If a hierar-

chical routing is used then the underlying clustering structure is
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composed of 2 clusters C (1), C1 (2) containing 7 nodes each, i.e.,

n1 =7, n2 = 2, m = 2 (see Fig. 3.2). The node addresses are as de-

fined in Section 2.3.1.1, and they are shown on the left of the nodes

in Fig. 3.2. With this clustering structure the length of an RT is

reduced to 9.u~k In what follows we will present the outcome of the updates and

a few key steps. The initialization is performed as mentioned above.

After a certain number of updates, if an NCR is used, all the RT's will

show (in the hop field) the shortest distances to all the nodes in the

network, and the first nodes of the corresponding shortest paths in the

"#next-node" field. A typical RT is shown in Table 3.1.

Destination Next Node Hop Field

2 12

3 1 3

4 8 2

5 8 3

*-6 8 4

7 8 3

8 8 1

9 8 2

10 11 2

11 11 1

12 x 0

13 13 1

14 13 2

Node 12, NCR Used

Table 3.1 RT at Node 12
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If an OBR or a CER is utilized, then updates between nodes in

the same cluster are performed similar to the non-clustered case. As a

consequence, after a certain number of updates the RT's will show the

shortest internal (included in the cluster) paths for nodes in the same

cluster. Tables 3.2.a and 3.2.b show the outcome of the updates at the

exchange nodes routing tables. For the sake of clarity, the contents

of the 1s t level cluster self entries are not shown, and also, the

other cluster entries are left equal to the initial value (c).

Destination

(1,1) 0 (1,1) 1 (1,3) 3 -u

(1,2) (1,2) 1 0 (1,3) 2

(1,3) (1,2) 2 (1,3) 1 (1,3) 1

(1,4) (1,2) 3 (1,3) 2 0 U

(1,5) (1,2) 4 (1,3) 3 (1,S) 1

(1,6) (1,2) 5 (1,3) 4 (1,5) 2

(1,7) (1,2) 4 (1,3) 3 (1,7) 1 U

(1, )

(2, ) O C

at node (1,1) (1,2) (1,4)

Table 3.2.a RT's at the Exchange Nodes
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Destination

(2,1) 0 (2,1) 1 (2,1) 3 "

(2,2) (2,2) 1 (2,1) 2 (2,6) 4

(2,3) (2,2) 2 (2,4) 2 (2,6) 4

(2,4) (2,5) 2 (2,4) 1 (2,6) 3

(2,5) (2,5) 1 0 (2,6) 2

(2,6) (2,5) 2 (2,6) 1 (2,6) 1

(2,7) (2,5) 3 (2,6) 2 0 -

(1, ) o oo

(2, )

at node (2,1) (2,5) (2,7)

Table 3.2.b RT's at the Exchange Nodes

Let us now look at the exchange of updates between nodes in

different clusters. As an example, assume that node (2,S) receives

update from node (1,1). The first 7 entries (in their RT's) do not

refer to common destinations and as such they are only utilized to

compute the aggregate routing information. That information (0 for CER,

st
average for OBR) is computed and stored in the 1 level cluster self

entry at node (1,1)'s RT, by either the sending or receiving node.

(Results of such computations are shown in Table 3.3.)
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ContentFLiiIii Z 1 OB
of entry

0 CER

at node (1,1) (1,2) (1,4)

Table 3.3 Aggregation of Routing Information -.

After the computation of the aggregate information, Algorithm

3.1 is performed. The outcome of this single step is shown in Table -

3.4 for all the exchange nodes in C1 (2).

(1,4)fF2 3/7 ~ 3 S/7 j(1,2) 3 OBR
Entry

at node (2,1) (2,5) (2,7)

Table 3.4 Intermediate Update

This information recorded in entry C1 (1) in the above RT's will

percolate inside cluster C1 (2). At one point (2,5) will receive an

update from (2,1) which will (if OBR is used) trigger a change in

iC1 )'s entry. It can be easily checked that entries reserved to C1 (1)

in (2,1) and (2,7) will not be affected by updates coming from nodes in

C1(2). As a result, the final outcome for such entries is as shown in

Table 3.5.
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C (1,4)~ Z1~l + 21 3+33j OBR
Entry
(1,) 1-IZ O 3l) CER

at node (2,1) (2,5) (2,7)

Table 3.5 Final Outcome

Notice that the resulting average path length from (2,5) to the nodes

in C1 (), is

3 + 5/7 CER (computed from Table 3.5)

3 + 3/7 OBR (see Table 3.5)

2 + 4/7 NCR (see Table 3.1)

As for (2,1) and (2.7), that average path length remains the same with

either one of the hierarchical schemes. The comparison of the above

numbers shows, as expected, that globally CER will induce a longer net-

work path length than OBR which, in turn, induces a longer path than

NCR.

Routing Function

The problem here is to decide upon the RT entry to utilize in

order to forward (or to send) a message from a node of address

( l, ... , i) to a node of address j = (M, Jm-' jl)

(see Section 2.3.1.1). Let us first notice that if k is the level of

the lowest level cluster to which both nodes belong, then their address

vectors must match starting from the left, up to and including, the

index k + 1, i.e.,
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ip =j p =m, m -,..., k 1

pp

i k j k -AV

As an example we compare the addresses of a few pairs of nodes chosen

from the 3 level clustered network shown in Fig. 2.1. The outcome of

the comparison is given in the table below.

(i3 ,i2,i1  (j3,j2,jl) k

(1,3,3) (3,2,1) 3

(1,3,3) (1,2,2) 2

(1,3,3) (1,3,2) 1

Table 3.6 Matching the Address Vectors

Because of the above property, the routing algorithm can then

easily perform a sequential, from left to right, matching of the address

vectors to find the value of k. Then the next node field of the jk
t

entry among the k-lst level cluster entries (see Fig. 3.1) will indicate

the next node on which to forward the message.

With the above specifications of the MHR and NCR schemes, we

are now ready to address the question as to what is the content of the

hop fields at any RT, under some defined equilibrium conditions.

3.1.3 Path Characteristics

If no changes occur in the topology of the network, after a

certain number of updates the contents of the hop fields in the routing

table will reach "minimal" constant values. In what follows, this
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situtation will be referred to as equilibrium condition. Similar to

the dynamic programing approach, the above property is due to the fact

that improvements are made sequentially at each update over the distance

from one node to any cluster (see Algorithm 3.1). The question arises

as to what is the meaning of the routing information at equilibrium, or2

in other words, what are the characteristics of the paths indicated by

the routing tables. We have already noticed that for the degenerate

one level hierarchical clustering, i.e., when no clustering is used,2

those paths correspond to the shortest paths in the current topology.

Before we proceed, a few more definitions and notation are necessary.

ch =t Length of the estimated minimum path from node p to

node t as derived from the routing information at

node s. (The superscript c stands for clustered

routing.) .

Internal path =a path is defined to be internal (included) in a

cluster Ck if all the nodes in that path belong to

that cluster.

h t =Length of the shortest path from node s to node t

included in the lowest level cluster to which both

*~ sand t belong.

* Exchange node =(defined previously) An exchange node (to be denoted

by e or e i) of a given cluster is a node of that

* cluster which is connected to one or more nodes

external to that clustar.2
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Ak~lk~l) = Subset of all the exchange nodes which connect

thcluster Ck(i+l) with any k level cluster which -

belongs to the same k+lst level cluster as Ck(ik+l).

w Aggregate variable representing cluster Ck and as

computed from the routing information contained at -T

the exchange node e of C..

From the above definitions and previous specifications we no-

tice fit-t that a network node (0 t h level cluster) is its own exchange

node, second that

ef for the OBR scheme

0 for the CER scheme 3.
: i 7 12WeC0 

:i

where Ik I represents the number of nodes in cluster Ck and f is an

arbitrary node of C.. The above considerations allow us to character-

ize the path lengths under the WHR schemes.

Proposition 3.1

Let s and t be two arbitrary nodes which belong to the same kth

level cluster Ck but not to any lower level cluster; then the length of

the path from node s to node t as derived at equilibrium from the routing

information contained at node s, satisfies the recursive equation below,

hC hi hc

st se0  eot (3.3)
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where 00 is an exchange node of Ck(t) which is such that

h +w = Waen hso + We C3.4)
0  eoCk.(t) es eA Ml ..

where Ck_l(t) is the k-I level cluster which contains node t, and

Ak_l(t) is its corresponding subset of exchange nodes as defined above.

Proof

The proof proceeds by induction on the level k of the lowest

level common cluster.- In what follows C.(s) and C.(t), j = 1, ..., ms
jth":

will always respectively denote the 3 level clusters to which s and t

belong.

k =1

s, t belong to the same 1st level cluster C1, then

C0 (s) - Ao(s) = {s}

C (t) = Ao(t) = {t.

Also, since the distance of a node to itself is zero, then

hc c
eot tt

In order to prove Eq. (3.3) there remains to show that

h~t hi
st st

i.e., that hc is the length of the shortest path from s to t includedst

in C This is true since the RT of any node in CI contains an entry

for node t; hence at equilibrium we obtain the minimal internal path

from s to t. Notice that if a a 1, i.e., the degenerate case, all nodes

belong to the same cluster C which corresponds to the entire set of

7
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nodes, hence hit = hst. In other words, when no clustering is used

the routing information indicates, at equilibrium, the shortest (hop)

path; which checks with the conclusion reached in Section 3.1.1.

Assuming that Proposition 3.1 is true up to k - 1, let us show

that it is true for k.

Proof for k

Let Ck be the kth level cluster common to s and t. All the
nodes in C contain in their RT's one entry for cluster Ck_l(t). The

propagation and the subsequent updating of the RT's among the nodes of

Ck, is equivalent to finding the minimum path, internal to from any

node in {Ck - S1 (t)} to the fictitious supernode S kl(t) shown in

Fig. 3.3. In other words, seen from any node in {Ck - Ck-l(t)},-

.~k-lt ej E Ak. 1 (t)

W,

Figure 3.3. Equivalent Representation of Cluster Ck1 (t).

cluster Ckl(t) is equivalent , in terms of distance, to a center node

-SSk 1 t) connected to all the exchange nodes in Akl(t). If

e. C Ak-l(t) then the length of the equivalent edge, from e. to the
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center node, is equal to the aggregate information representing cluster

Ckl(t) as seen from ej, i.e.,

L~e., SCk l(t)) =weCt (3.5)

Notice if the CER scheme is used then the above equivalent represen-

tation reduces to the single node S-I (t). In general, from Eq. (3.2)

h (OBR)

w Iktlfklt)ef(3.6)

ejCk-l(t) 0(CJER)

st cSince e and f belong to the same k-l level cluster then h is
e f

defined because of the induction hypothesis. Hence, the above equation

is known. ".

If e0 is the exchange node in Ak_l(t) which belongs to the

minimal path from s to SCkl(t) obtained at equilibrium, then e0

satisfies Eq. (3.4) which represents the length of that minimal path.

Due to the routing function, previously specified, all messages to be

forwarded or sent from node s to node t will follow the same minimal

path up to the exchange node e0. At that point e0 and t belong to the

same k-Ilt level cluster, hence, ho is known from the induction
0

hypothesis. Consequently

h c  =hi +hciiiSt se0  eot '""

e0  e0

where e0 satisfies Eq. (3.4). Q.E.D.

*0
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Remarks

i. If the CER scheme is used, then Eq. (3.4) becomes

h min hse. (3.7)
e A t)

The above equation indicates that e0 is the closest exchange node of

S~i(t) (for paths included in C. )to node s. This explains the

nomenclature: Closest Entry Routing.

ii. Arbitrary Channel Lengths. Instead of assigning (as

above) length 1 (1 hop) to all the channels, we intend to let the chan-

nels be of variable lengths. Let a.. represent the length of channel

(i,j), then the length of a path, wst, from node s to node t is defined

ass

L(a (.8)a..

st) =(i,j)crst"_'(3.8)

The specifications of the MHR and the NCR schemes are still valid

except that any hop distance is replaced by the new assigned length.

Hence Algorithm 3.1 becomes

IF HF(t, C.(i)) > ats + HF(s, C.(i))
(3.9)

THEN HF(t, C(i)) 4-as + HF(s, C.(i))

NEXT NODE FIELD OF C (i) s END. lei

CJ
Also if we let hc hi and w be as defined previously, then

st' st' "Ck

Proposition 3.1 still holds true. "
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3.2 Bounds on the Increase in Path Length

The effect of the clustering (reduction of routing information)

is the increase of the path length between any pair of nodes, s, t, -.

of an amount hc - hst A measure of performance of the MHR schemes
st t

could be the relative increase of the average path length, i.e.,

hc  "

D - 1 (3.10)

where h and h denote the average path length in the network respec-

tively with and without clustering,
I

(3.11)
hi hc.. W N (N -1) sote st- "

Proposition 3.1 provides a means for computing the values of

hc for any pair of nodes s, t, for a given outcome of the m-level
st

hierarchical clustering of the set of nodes, S. Consequently, for

that particular situation, it is numerically possible to evaluate the

relative increase D, Eq. (3.10) and then compare the clustered with the

non-clustered schemes. Moreover, with further assumptions on the

structure of the hierarchical partitioning of the nodes, we can obtain

analytic bounds on the increase in the path length.

0
*; i Assumption 3.2 -

1 thThe diameter of any k level cluster subnet (see assumption j"-

3.1) is less than or equal to a quantity dk, k = 1, ... , m.

1Recall that the diameter of a network is the maximum shortest path
between pairs of nodes [HARA 72].
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Notice that dm represents the diameter of the entire network

and thatK d 1>0 for all k's.

Assumption 3.3

Any cluster at any level k f 1, 2, ... , m contains the

shortest path (if it is not unique, then at least one is contained)

between any given pair of nodes which belong to that cluster.

Assumption 3.2 is simply the specification of the outcome of

the clustering of the nodes, since the dk's can be of any value.

Whereas Assumption 3.3 is a natural property that any clustering scheme

should seek. The reason for this is that traffic between nodes in the

same cluster must (because of the routing function above) follow paths

internal to that cluster.

The above assumptions lead to the derivation of some simple

bounds. These bounds, on the increase in path length, pertain to the

routing schemes (OBR, CER) described in Section 3.1. All the prop-

erties listed below rely on Assumptions 3.1 and 3.2. If Assumption 3.3

is used, it will be so specified.

Lemma 3.1

Under the above conditions, the value of hc for any pair of
st

nodes s, t which belong to the same kth level cluster is such that e0

kth
k 4 s, t samek level clusterc

hC < L d. (3.12)st- J k = 1, 2, ... , m

Proof "

The proof proceeds by induction on k. First if k = I then

similar to the proof of Proposition 3.1 (for k= 1) t = hst" Then
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cw

from Assumption 3.2, h < dl, hence h < d which checks Eq. (3.12).
st 1' st 1

Now assuming that Lema 3.1 is true for all levels up to k - 1, let us

show that it is true for k.

thLet s, t be a pair of nodes which belong to the same k level

cluster Ck. Let C be the lowest level cluster to which both s and t
p

belong, hence p < k. If p < k then from the induction hypothesis.

c~ P k
hCd. < d.st - j ._E

j=l J=l I

which checks Eq. (3.12). Else if p = k, then Eq. (3.3) holds true. In

Eq. (3.3), because of Assumption 3.2

s, e C =>h < d0 k se0 - k

Also, because of the induction hypothesis

k-1
eo, t E Ck l(t) -> h e j=l

Substituting the above relations into Eq. (3.3), we arrive at Eq.(3.12).

Lemma 3.1 leads to a bound on the increase in the average

path length and on D (Eq. (3.10)).

Proposition 3.2

Under the conditions above and Assumption 3.3, the increase in

the average path length in the network due to the reduction of routing

information, is such that:

* .m-1 n n2...nk-1
h -h <] Nd (3.13)c < N 1
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Proof

Let Ck (s) denote the kth level cluster (k = 0, 1, .. , m) to

which s belongs. Then from Eq. (3.11),

h -h= 1 (hc h) (3.14)
c N(N - 1) s st

scS k=l tEC (s)
t:Ckl(s)tfCk-l(s)

The above expression was obtained through the decomposition of the

computation of the average over all the nodes in the network. Then for

a given node, s, the decomposition i done over nodes in the same 1s t

level cluster as s, excluding s (C0 (s) = s), then over nodes in the same
nd1st

2n d level cluster as s, excluding those in the same 1 level cluster

as s, etc...

Let k_l(j) be a k-ls t level cluster included in Ck(s); there

are nk such clusters, then
knk

n k
c

t ( (hc - ) (h hst)
teCk(s) " jl tECkl(j)

t _Ckl(s) Ck-i ( j ) nCk (s)=O

(3.15)

Since _l (j) n Ck_l(s) = 4 and both are included in Ck'S, Eq. (3.3)

holds true for s and any node t in Ck-l(j), hence

hc h1(j)l I + hc (3.16)
eeCk 1 (j) st Ck-1 se 0  teCk-1(J) e0 0

where e 0 satisfies Eq. (3.4). Two cases to consider are

i. OBR scheme. From Eq. (3.2)
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6c

w h 13.h7
e0 k-1 (j) Ik(JtfE~k-(j) ' 0 f(.7

Substituting Eqs. (3.17) and (3.4) (in Eq. (3.4) t is replaced by j)

into Eq. (3.16), we arrive at

E hc ICk.1(i)I min + kl

(3.18)

Let us define e5 to be the closest (inside Ck(s)) exchange node of

Ak_1 (j) to node s, i.e.,

h MIT 111e. (3.19)
s e J-A kl(j)

From Eq. (3.18) and for any exchange node e., particularly es, the

relation below is true.

hcklj h + ht (3.20)
U:Ck10) t- l~k-~j) e s teCk~(0) s

Note that in the equation above w was replaced by its value as defined0

by Eq. (3.2).

Moreover, from Assumption 3.3

h it =h 31 Vs, t (3.21)

Then from the definition ofe

ht = th 'JIt 0 kl) (3.22)

Consequently,
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E hst- ICk_-(j) hse (3.23) 6

tekl (0) s•

Substituting Eq. (3.23) into Eq. (3.20), we arrive at.

(t hst) < hc  (3.24)

tEC s(j) th t -- j) S
tCCklljj) est

Note that es, t Ckl(j), then from Lemma 3.1,

k-i
h e < F d. ¥ t Ckl(j) (3.25)

From Assumption 3.1

ICkl(j) l = nln 2...nk.. n kk, j (3.26)

Substituting Eq. (3.24 - 3.26) into Eq. (3.15), we find

k-1
(hc h < - )n n n d (3.27) "

tEC (s) (hst t (nk 1 )n *-1 nk J =
k

tfCkI(s)

Note that this last equation is true for any level k, and for any node

s, hence by substituting it into Eq. (3.14), we obtain

~h~-- m k-i
h - h < N 1 nln2 ... nk(nk - 1) d.

k=1 j=l

Note that for k = 1, 0. .
j=l

Interchanging the summations in the equation above, we get

:6 r-i m
" ~ d. n ...n - I)h h< - I . k=j+ 1n2 (nk
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which after some algebra, gives Eq. (3.13).

To end the proof it is left to show that the CIER scheme also

satisfies Proposition 3.2.

ii. CER Scheme. From Eqs. (3.2) - (3.4) and (3.19), we find

hc = hi + hc
Sse s est

c c

L h5  = 1 + h (3.28)
t Ck-l() shes e t '.

te Ck-l1j )  st =  
tCk l(j) es 3.8

This equation is equivalent to Eq. (3.20) except that the inequality is

tight here. Two conclusions: (1) the rest of the proof can proceed

exactly as in (i), (2), Eq. (3.28) compared to Eq. (3.20), indicates

that the summation of path lengths obtained with the OBR scheme is

smaller than or equal to the one obtained with the CER scheme. Hence

the average path with an OBR is smaller than or equal to the average

path length with a CER.

The above proposition deals with averages; we now intend to put

a bound on the increase of the path length between an arbitrary pair 0

of nodes s, t.

Lemma 3.2
*O
Under the previous conditions and Assumption 3.3, and for the

CER scheme

k-1 ¥S, t c same k th level cluster Ck

hc -h d (3.29)
st = k = 1, 2, ... , m
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Proof

Under the above condition Eq. (3.28) holds true

hc + h che-
st se e t

S S

Since e , t e Ckl(j) , then from Lemma 3.1

k-i
hc  < 1d
e i=

Also, because of Assumption 3.3, and Eq. (3.19)

h h > h
st st- se.

Combining the last three relations together, we find Eq. (3.29).

Note that lemma 3.2 is not true with the OBR scheme, because

such a scheme tries to find the best overall exchange node (e0 to

route the messages to, instead of using the closest one.

We observed previously that Assumption 3.3 is a realistic one,

but if it is not specifically built into the clustering algorithm, there

is no guarantee that the outcome of the clustering always satisfies that

assumption. This remark leads us to the following proposition.

Proposition 3.3

Under the conditions of Proposition 3.2 and with Assumption 3.3

removed,

m-1
h - h < dk (3.30)

k=i

Proof

Let s, t be an arbitrary pair of nodes and let Ck be the lowest
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level cluster to which s, t belong. Two cases to consider are

i. k < m. From Lemma 3.1

k
c
ht < F d.

j=l J

Hence c k m-1
h h h L~ d. < Fd. (3.31)st st- -- < j~l Jl J-

ii. k = m. C represents the entire set of nodes, hence

hst st

Then similar to the proof of Proposition 3.2, we can show that Eq.

(3.27) holds true for k = m, i.e.,

m-1
(h.-hst) n - 1)nn2 l d. (3.32)

teC (s) ht n m n m- j=l .mtC 1 (s)

Because of Eq. (3.31) and Assumption 3.1

m- 1
(hc h nn.n 1  d. (3.33)

teCl(s) st hst) 2-.m 1  = J

Substituting Eqs. (3.32) and (3.33) into (3.14) we arrive at Eq. (3.30).

Conclusion

In summary, several fairly general bounds have been derived,

depending on the assumptions and/or the routing schemes selected. In

the next paragraph we will study the behavior of some of those bounds

in the context of a defined class of networks. Let us also show that

for the degenerate case of 1-level hierarchical routing (NCR scheme)
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the bounds derived over the increase in path length are tight; i.e.,

for m = 1, Eqs. (3.13) and (3.30) become

h -h< 0

but since h - h> 0=> h = h. Also Eq. (3.29) becomes hc = h
C c st st

3.3 Static Performance Evaluation of the NHR Schemes for a Family

of Networks

If temporarily we do not take into account the significant

gains obtained in reducing the CPU, storage and line utilizations

required by the routing procedures, then the application of the MHR

schemes will result in a degradation of the performance of the network,

as compared to the utilization of a non-clustered scheme. The loss in

performance (delay, throughput) is closely related to the average path

length a message follows in the network. The evaluation of the increase

in path length provides us with a first cut modeling of the loss in

network performance. Moreover, the study of the bounds, derived pre-

viously, represents a worst case evaluation of the MHR schemes. Since

the evaluation is in terms of path length, we will refer to it as

static performance evaluation. The gains obtained are modeled by the

single variable £/N which represents the reduction of routing infor- 6
mation (we will refer to L/N as the relative table length). The static

performance evaluation is performed over a class of computer networks.

3.3.1 A Family of Large Distributed Networks

The networks to be considered are all the connected graphs
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upon which it is possible to fit an m-level hierarchical clustering

whose outcome satisfies Assumptions 3.1 - 3.3. Also the resulting

cluster subnets at any level are of diameters bounded by a power law I

function of the number of nodes in that cluster; i.e., if n is the size

of a cluster and d the diameter of that cluster's subnet then

d < bnv + c (3.34)

where b, c, v are positive parameters and 0 < v < 1 (see below).

If N is the size of such a network, then the average path

length (hop distance) of that network, h, must be a power law function

of N,

0h = N (3.35)

where a is a positive parameter.

Grid type networks [BARA 64], hexagonal networks, etc., fall

into that category when the MiC results in subnetworks of similar struc-

ture as the original and when the path lengths are expressed in hops.

Expressions for the average path length (with a uniform traffic matrix

y.. = y) and for the diameter of the grid and the torus networks have
13

been derived in Appendix A. Some of the results obtained are:

h rN

Square grid of size N (3.36)
d = 2 N/ - 2-.

h --

Square torus of size N, (3.37)

(with VNodd) d ff /- 1
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Furthermore, if the partitioning of either the square grid or

' torus networks results in grid cluster subnets at all levels (see Fig.

5.6), then for any cluster subnet of size n its diameter d is such that

d < 2 - 2 (3.38)

As a consequence the grid and torus networks fit the above descriptions.

Note also that for those networks the exponent v (Eqs. (3.34) and

, (3.35)) is equal to 1/2.

In general, the exponent v reflects the connectivity of the

network considered. For very highly connected networks v is in the

neighborhood of zero; e.g., for a fully connected network v = 0

(h = 1, d = 1). Whereas for very low connected networks v is in the

neighborhood of one; e.g., for loop or chain type networks, v = 1.

Computer communication networks fall into the class of dis-

tributed networks. This class includes networks such as the ARPANET,

the NPL network [DAVI 73], the Cyclades network [ZIMM 75], TELENET,

etc. The main characteristic of those distributed networks is their

low connectivity. In general a connectivity 2 (or 3) is imposed on

their design. For large distributed networks a connectivity of 3 to 4

seems more appropriate [ NAC 73]. The torus networks considered above

-
are of connectivity 4 and with an exponent v = 1/2, hence they appear

to be good representatives of large distributed networks. Moreover,

their topological structures lead to simple partitions such as square

4. subgrid clusters. In the sequel, we will first derive a limiting

result valid for the entire class of networks, then we will restrict

our considerations to values of a, b, c, v as obtained for a torus.
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3.3.2 Limiting Performance of the ?4HR Schemes

As mentioned earlier, the static performance evaluation of the

MWR schemes involves the determination of a bound on the relative

increase in the average path length. For the above family of networks,

ththe size of a k level cluster is nn 2 .. .nk and because of Eq. (3.34),

d= b(nln2 ... nk)v + C k = 1, 2, ... , m (3.39)

This family of networks also satisfies Assumptions 3.1 - 3.3, hence

Proposition 3.2 holds true. From Eqs. (3.10), (3.13) and (3.39)

D = h-1 < E - - (Nn c
a(N - 1)N k=l i=1

(3.40)

Notice that E is defined as the bound on D. It is the behavior of

E versus XIN that we are interested in. Two cases will be distinguished

in the study of E; first when the MHC results in a minimum table length,

Eq. (2.6), second when the MHC results in a vector minimizing the bound

E for a given table length X.

For an optimal clustering structure we know from Proposition

2.1 that the degree vector must satisfy Eq. (2.5). Substituting Eq.

(2.5) into Eq. (3.40), we arrive at

lN [N - Nk/ Nkv/m +
aCN- I)Nv k=

and if we restrict v to be different from zero, then after some

algebra
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E = a(1 l N~ [Nv + c.(m - 1) - b v vl - C ci;l:
N -1

[bK N N.

a(N- 1)N v  N N --M 1 l m 1 +

N m

IIThe above considerations lead to the general limiting result below.

Proposition 3.4: Limiting Performance

Consider the above family of networks and the above NIIR schemes

(OBR, CER) with a fixed number of levels m and an optimal clustering

structure. Thena as N, the number of nodes, goes to infinity, the

"static" performance of the !4IR schemes approaches that of a non-

clustered routing scheme, while the relative table length approaches

zero; i.e.,

N co> (3.43)

Proof:

From Eq. (3.42), the above limit of LIsN is obvious (recall

that m is fixed). Also from Eq. (3.3), it is obvious that

SS
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hence
h >h> .

Then because of Eq. (3.40)

h
o<__0 - 1 < E (3.44)

h -

As a consequence, it is enough to prove that the limit of E is zero.

Expanding Eq. (3.41) around N-I we find

E bN-v/m + V/m (3.45)

hence

limit E = 0 Q.E.D.
N- d

Notice that the closer v is to one (v j 0), the faster is the

convergence of E to zero. In other words, as could be expected, the

more distributed (the less connected) the networks are the better the b

WHR's perform. Notice also the enormous gains in table length for a

relatively insignificant increase in the average path length.

The above results hold true if we relax Assumption 3.3 imposed

over the outcome of the clustering of any of the networks which belong

to the family considered here. To prove this statement let F be the

bound on the relative increase in path, as obtained from Proposition

3.3, i.e., from Eq. (3.30) and (3.39),

h m-1

1 < ~F= 2 [b(n n. .nk~ +c] (3.46)

For an optimal clustering, the above equation becomes,
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L-T

F = - [b N N + c(m- 1) (3.47)

Similar to E, as N goes to infinity, F goes to zero, which implies that

h /h goes to 1.

C

The result of Proposition 3.4 was derived for a fixed m; let

us now examine the situation where m is variable. Of interest is the

value of m which corresponds to the global optimum clustering structure.

That value is, from Eq. (2.17), m, = lnN.

Substituting Eq. (2.17) into Eq. (3.41), we arrive at

1___ N v X
E, E = - bN - + c(ln N -1)N

_ l v 1

Nl+ v e +v N
b l+v - e (3.48)

Then limit E b 1 l+v (3.49)
L.N- e 1 e -1-

As a consequence the result of Proposition 3.4 is not necessarily true

anymore. If we consider grid or torus networks, then from Eqs. (3.36)-

(3.38),

for a grid: a b 2, c -2, v

1 1 (3.50)

Substituting the above values into Eq. (3.49), we arrive at

89

0 U



limit 1. 5.01 for torus nets

_ 3. 76 for grid nets

Fig. 3.4 illustrates the behavior of E* (for torus) with respect to N.

The curve shows E* as an increasing function of N. It also shows that

the cost of operating at the (global) minimum table length may become

quite high (up to 6 times increase in path length). Fortunately, as

noticed in Chapter 2, most of the table reduction, for practical pur-

poses, may be obtained with m quite a bit smaller than the global

number of levels m*, and as we will see in later plots (Figs. (3.5) and '
(3.7)) the cost at a small m is quite minimal. Those figures also show

* ~the behavior of E* versus tN

3.3.3 Static Performnance Evaluation for the 14-R's: Numerical

Applications 0

In the previous section we observed that at the limit (N - o

considerable table reduction can be achieved with no loss in performance.

In this paragraph, we intend to look at the more general case of a finite.

N. The purpose is to correlate the degradation in performance with the

table reduction. More precisely, we will evaluate a maximum performance

* degradation in terms of the gains in table length. Also this evaluation

will be carried out with an ?'tC which results first in a minimal table

length and second in a minimal bound E.

*The numerical study below is restricted to values of a, b, c, v, (

as v. .Lned for torus networks (Eq. (3.50)), although such a study-2

could easily be repeated for other networks which belong to the familyj

* considered here.
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Figure 3.4. Relative Bound on the Increase in Path Length at Global Minimum Table Length.
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3.3.3.1 Evaluation with an ?&IC Resulting in a Minimal Table Length

K The expression o'f E has already been derived, in Eq. (3.41),

for an MHC which results in a minimal table length k, Eq. (2.6). If

* we consider torus networks, then from Eq. (3.50) E becomes

2 [2 [Nl /2 -Nl/ 2m (n )
(N- l)N LN m -1J

N 3/2  N N3/2 mn N N Nl/m1
-2 + 2 N/

N3/2m -1m

2, ~l/m(3.52)
N N

*
The above equations provide a parametric representation of E as a func-

tion of 2,/N. m acts as the coupling variable in that representation.

By letting m vary from 1 to lnN we obtain all the possible values of

Z/N; and subsequently for each value of 2,/N we obtain the corresponding

* value of E. The above range of m is chosen in accordance with the

results obtained in Chapter 2 (refer to Proposition 2.2 and Fig. 2.5);

and also in accordance with the fact that E is an increasing function

of m (this fact is obvious from the proof of Proposition 3.2).

Numerical results are presented in a set of figures as follows:

Fig. 3.5 illustrates the behavior of E with respect to LI/N and for

several values of N. We observe that an original substantial table

reduction can be achieved for small values of E, i.e., for a small drop

K in performance. H-owever if we try to reduce 2,/N to values close to its

global minimum, Eq. (2.19), then E increases sharply. Fig. 3.5 also

illustrates the limiting behavior of the MHR schemes (see Proposition
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Figure 3.5. Relative Bound on the Increase in Path Length, E, versus the Relative Table Length, QIN.
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3.4) whereby as N becomes larger, more gains can be obtained for a

lesser loss in performance. This property is shown by the fact that

the curves E versus LIN stay flat on the LIN axis for larger intervals.

* The linear scale, Fig. 3.6, provides a better illustration of the above

phenomenon.

Figs. 3.7 -3.8 show the behavior of 1/(l + E) with respect to

LItN. The function 1/(l + E) represents a lower bound over h/h (see
c

*Eq. (3.44)). These figures exhibit properties similar to the previous

* ones.

Finally, Fig. 3.9 shows how much table reduction can be ob-

tained for a given "tolerance" E as a function of the size N. The

concentration of the curves for 1 < E < 5 (Note from Eq. (3.51) that

E 5 is the maximum error for torus networks.) again shows that beyond

* - a certain point the gains in table length can only be achieved at the

expense of large losses (large E). However in the range 0 to 1 for E

* considerable gains can yet be obtained. For that range of E as shown in

Fig. 3.10, the corresponding range of the numbter of levels m is limited

to fairly small values. The curves in Fig. 3.10 represent the values of

m which are computed from Eq. (3.52) for a given E and N, and which

* served to find the value of LIN for a given tolerance E (see Fig. 3.9).

1 ~The fact that m is considered to be a real variable will be interpreted .U

in the next section.

Moreover, in Section 2.3.2.4, we noticed that most of the

+ table reduction is obtained for small values of m. We conclude that

the MIIR schemes operating with a small number of levels 2 < m < 4

yield substantial table reduction for a relatively small increase in
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path length.

The above study considered MHR schemes (OBR, CER) based on

clustering structures which yield minimal table length. The question

arises as to the existence of a clustering structure which minimizes

the increase in path length.

3.3.3.2 Minimal Bounds

In this section we address the problem of choosing a cluster-

ing structure (i.e., n, m) which minimizes the increase in path length

for a given L and N. Since we have no analytic expression for the

increase in path length, we will limit our considerations to minimizing

the bound E (or F). In order to simplify the problem we will also

assume a partitioning of equal size clusters at any level. Thus for a

fixed m, the optimization problem is
0'

Given: N, Z, m (integer) -.

min: E (see Eqs. (3.40)and (3.50))

over: n real-valued vector 0'
m (3.53)

s.t.: n nk< Z

km1

fnk.N
k-2

For the abo nrobles to be feasible, the given table length must

satisfy S

I> mN l l m  (3.S4)
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which is a straightforward consequence of Proposition 2.1. In what

follows we assume that X always satisfies Eq. (3.54).

Problem 3.53 can be easily solved numerically for mn 2 and

m 3; beyond that it becomes quite complicated and no effort has been

expended in that direction. However, as noticed earlier, mn 2, 3 will

capture most of the realistic table reductions for a fairly large range

of N (N up to 106, 10 ). TNo cases to consider are

mn 2

The objective function, Eq. (3.40) and Eq. (3.50), is

Eu 4 1/2E2 ( ) 1 /2 (N n n1)(n 1  - )(3.55)

Since the bound E is a decreasing function of Z (see Fig. 3.5) then at

optimality the constraint n1  n 2  i tight. Hencen, n are such

that

1 2

whose solution is the pair

£ 2 - N(3.56)

Finally, the optimal solution can be numerically obtained by choosing

the pair n,, n2 which minimizes E2 and satisfies Eq. (3.56).

Fig. 3.11 shows the plots of the minimum E2 (denoted by E2 on

the graph) with respect to LIN and for a set of values of N. Also

represented, is the bound E, Eq. (3.52), obtained with a vector n which

satisfies Proposition 2.1 (i.e., nk N 1/" k =1, m.,i). The main
0k
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observation is that E is, in general, a slightly larger bound than E2.

For large values of X/N or N, E2 and E are very small and close to each

other. They are equal at i/N = 2N- /2 which corresponds to the mini-

mumtable length at m 2 (n =n 2 =fvN).

m= 3

Similar to the above, at optimality the first constraint is

tight, hence

n + n2 + n 3 (3.S7)"
nn 2n3 = N

Then for any feasible vector n and for a given n3 > 0, the pair n1 , n2

(or n2, n ) must be equal to

12 "n3 +- k nC 2 4 (3.58
2) N C )

f3j

Also the expression of the bound for a feasible N is (Eqs. (3.40),

(3.50) and (3.57)),

4 1 / 2 _2 'N
(N (N )(nN~ \I+(N - l)N 1 / 2 [N nl)(n I - - \\ -i* )  .,.]

(3.59) S
Note that in Eq. (3.59), n2 was replaced by N/n1n3. Then for a given

n3 , the minimum of E3 can be found by evaluating E3 for the two possible

values of n1 , Eq. (3.58). Afterward we minimize the result over n 3 .

W The results of this entirely numerical procedure are shown in Fig. 3.12, ....

(where the minimum is denoted by E3) Fig. 3.12 also shows the bound E

Eq. (3.52) for a continuous m (1 < m < 3). The curves for the minimum
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Eare also shown here.

Notice that E =E 3for LIN/ N which corresponds to the

minimum table length for a 3-level hierarchy. Similar observations as

above apply here. In general for a given tIN, E is slightly worse than

2 3nd ' except for large values of LIN (i.e., small table reduction)

where all the curves are quite close to each other, with sometimes E

*even a bit better. Also, the lower envelope of E2and E 3 corresponds to

the overall minimum of Problem 3.53 where m is restricted to either

2 or 3.

The above comparison of E to E2and E3leads us to the follow-

ing important remark as to the utilization of a continuous number of

* levels m.

Remark: Continuous m

The fact that, in general, E is slightly worse than E2 or E3

will allow us to always use an MAC which results in a minimal table

length (L = rr/m) and whose number of levels is continuous, and still

evaluate a worst case performance of the MAR schemes. In other words,

in the sequel the MAR schemes will always be characterized by E and L

as given in Eq. (3.52).

A non-integer value of m may be interpreted as explained in

the following example. Assume that we need to operate a network of

size N with an MAR but with an allowed maximum increase in path length

equal to E0 For those values of E and N we can find the minimum0' 0
table length 1t0 (as in Fig. 3.9) and the corresponding number of levels

1/in0
MOt m 0N .Now assume that m 0 =1.5; then we can choose a
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number of levels m =2 and a vector n which minimizes E(Problem 3.5

with m = 2 and k = X .The minimum value of E 2 is, in general,

slightly better than E;hence the new M4C with a discrete m satisfies -

the maximum tolerance allowed.

The above remark is only true for 1 < m < 3 but as noticed

previously, that range of m yields most of the table reduction for

practical purposes. Also, from the shape of the curves in Fig. 3.12,

it appears that these results could be extended to higher values of m.

3.4 Conclusion

In this chapter we examined the effect of hierarchical routing

on network path length. Bounds were derived to evaluate a maximum

increase in path length for a given table reduction. Furthermore, the

bounds demonstrate that no significant increase in path length need be

incurred in the limit of a very large network. V

The reduction in table length means that more channel capacity

and storage are available for the transmission of data traffic in the

network. However, those gains were obtained at the expense of longer

paths in the network. It is then natural to evaluate the performance

of the hierarchical routing in terms of delay and throughput, and to

define the region of N where clustering becomes economical. These

questions are the object of the next chapter.
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CHAPTE R 4

STOCHASTIC PERFORMANCE EVALUATION

OF THE HIERARCHICAL ROUTING

The previous chapters (2, 3) demonstrated that enormous table

reduction can be achieved through hierarchical routing. A shortcoming

of those gains was found in the increase of the network path length.

This means that the nodal storage and channel capacity recovered as a

result of the table reduction may have to be partially or completely

(or more) paid back to handle the excess traffic caused by longer net-

work paths. in this chapter we are interested in the trading relations

among the table reduction, the nodal storage, the channel capacity, the

network size, the throughput and the delay. Several queueing models

are developed to capture and exhibit the interrelationships among these

variables. The models demonstrate that for some reasonable cost and

performance constraints and for a class of symmetrical and distributed

networks, the non -hierarchical routing becomes infeasible for N (net-

work size) beyond some "critical" value; whereas, on the other hand,

they show that hierarchical routing operating with an appropriate table

length is capable of maintaining a fairly good network performance for

fairly large values of N.

In what follows, first we present the analysis of network per-

formance under fixed routing, and a fundamental assumption upon which

we will build the models mentioned above. This assumption typically

results in a mapping of hierarchical and non-hierarchical adaptive

routing into deterministic (fixed) routing. Then four models will be
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gradually developed to deal with different subsets of the variables

above; listed by order of complexity, they are:

Mdel with no updates and no storage limitation

Model with updates and no storage limitation

Model with no updates and with storage limitation
Model with updates and with storage limitation

4.1 General Considerations

The objective here is to first introduce the original model

developed by Kleinrock [KLEI 64] for delay analysis in store-and-forward

(S/F) computer networks. Then we introduce a class of symmetrical net-
S.-

works and a main assumption which will serve as a framework for the

four models to be developed in this chapter.

4.1.1 Delay Analysis in S/F Computer Networks: Kleinrock's Model

As described in Section 2.1, in a S/F net, a message enters

the net at the source node, visits several nodes along the communication

path, and leaves the net at the destination node. The time a message

spends at each node is the sum of nodal processing time (for routing

purposes), of queueing time due to interfering messages, and the trans-

mission time. A very important performance measure of an S/F net is

the total average delay, T, a message spends in the network. T is

then defined as

4
Ti ziY (4.1)
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where: Yij - average message rate from source i to destination j

z = average message delay from i to j

Finally r is the total input rate (throughput),

r Yi(4.2)i,jES Yj-1

A straightforward application of Little's result leads to the

expression of T in terms of the individual channel delays [KLEI 64],

NA A.

T = t i  (4.3)

where: A. = average traffic rate on channel i1

t. = average nodal processing plus queueing plus -'V

tht
transmission on the ih channel.

Unfortunately, we are not able in general to evaluate t. and

A V However, if we make the following assumptions [KLEI 64]:

a. external Poisson arrivals

b. exponential message length distribution (identical for

all messages) I:

c. single packet messages

d. error free channels

e. no nodal delay

f. independence assumption

g. deterministic routing

h. infinite nodal storage

With such assumptions (to be discussed later), the S/F net

can be modelled as a network of queues of the Jackson type [JACK 57].

109

V



In particular each queue behaves as an independent MIM1I queue and the

average delay on channel i, ti , is given by

S 1 (4.4)

1i

where: - average message length [kbits/messg]

C. = capacity* of channel i [kbits/sec]

The average rates X. i = 1, ..., NA, can be easily computed, given1

the underlying deterministic routing.

The substitution of Eq. (4.4) into Eq. (4.3) gives

T = N A (4.5)

i=l -i "

A simple relationship exists between the total internal traf-

fic A, the total external traffic r, and the average weighted (with

traffic) path length n.

n = A/r (4.6)

NA
where A = Ai  (4.7) 0'

Moreover in a 0-load condition, i.e., yk - 0 ' j, k , the total

average delay becomes,

NA Xi/A
T n (4.8)ni=l PC i (4.8

where X./A is a constant which depends only on the routing scheme.

Not to be confused with the notation used earlier for cluster.
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Discussion of the Above Assumptions

Discussions of the above assumptions can be found in [ICLEI 641,

[FULT 72], (GERL 73A], along with some further extensions of the above

model. In particular, we will discuss the last three assumptions in

order to motivate some of the models to be considered in this chapter.

Independence Assumption: [KLEI 64], [FULT 72]

This assumption is quite acceptable as long as the network

does not contain long chains with no interfering traffic.

Deterministic Routing Assumption:

As mentioned in Section 2.1.1, typically, a network is designed

using deterministic routing [GERL 73A] and then operated using adaptive

routing. Consequently the validity of this assumption depends criti-

cally on the difference of behavior between deterministic and adaptive

techniques. A thorough investigation on this subject can be found in

[FULT 72). Fultz finds a close agreement between the two techniques.

He showed in a 19-node net application that the difference in delays

obtained with a well chosen adaptive technique and with a near-optimal

deterministic technique is less than 5 to 10% almost until saturation.

The "adaptive" delay tends to be higher, mainly because of the line

Fultz's study is, of course, dependent on the particular

adaptive policy and network considered. However, it demonstrates that

adequate adaptive policies can be devised to achieve a performance very

close to that of a near-optimal deterministic policy.

Further refinement of the above assumption can be realized by



including the line overhead due to the update traffic. This consider-

ation will become crucial when dealing with large nets, as we will see

later.

Infinite Storage Assumption

Nodal storage limitation can cause blocking and, consequently,

retransmission (ARPANET) or loss of messages, hence an increase in delay

or a decrease in throughput. Moreover, it can lead to serious network

degradation and even deadlocks [FULT 72], [KAHN 71], [KLEI 74).

Zeigler (ZEIG 71] investigated some theoretical aspects related

to the dynamics of cliques of blocked nodes in a symmetrical network

.4 . environment. -

It is generally accepted [FRAN 70], [COLE 71], that with rea-

sonable storage size, the above assumption is fairly accurate. However

this assumption becomes critical if the nodal storage becomes small.

'This situation is very likely to occur in a large network environment

if the routing tables are not reduced to a reasonable length. A model

is presented in Section 4.4 to precisely deal with this question.

4.1.2 A Class of Symmetrical Networks

4The delay analysis performed in the above model relies on the

knowledge of the input rates (X Is) to the individual channels in the
1

network. As mentioned earlier, the A i s can be determined once we know

the deterministic routing policy and the traffic requirement. Moreover,

if we know the channel capacities then the X. Is can be computed to lead

to a minimal delay T [FRAT 73].
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A shortcoming of the above numerical procedures is that, in

general, they hide the interrelationships existing among the different

design variables (traffic requirement, channel capacities, network

topology and average delay). Fortunately, for some symmetrical networks

(see below) a simple analytical relationship exists among the above

variables.

The class of nets to be considered in this chapter is composed

of all the nets which belong to the family of nets presented in Section

3.3.1, and which also satisfy the following properties.

1. All nodes are equivalent with respect to the topology

of the network. Hence they are of equal degree, R.

ii. All channels are of equal capacity C.

iii. All external input traffic rates are equal, i.e.,

Yjk y * ~j, k S (4.9)

As an example, torus nets (see Appendix A) fall into this category.

The above properties lead to a simple delay expression.

4.1.2.1 Average Delay

For this class of nets, the following relations exist:

Number of (simplex) channels: NA =R - N (4.10)

Total external traffic: r - N(N 1 )y (4.11)

Furthermore, it is obvious that with this particular topologi-

r cal structure, capacity assignment and traffic requirement, the optimal -

flow assignment [KLEI 64], [GERL 73A] is a shortest path routing. The

selection of the particular shortest paths (in case that more than one
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exists) must result in perfectly balanced flows, i.e.,

= 1 i = , ... , NA (4.12)1

" Consequently the network path length n becomes the average shortest

path length h, defined in Appendix A, Eq. (A.2), then from Eq. (4.6)

A h (4.13)

r

Also the total internal traffic A (Eq. (4.7)), becomes

A = NA X (4.14)

Combining the two equations above, we arrive at

X h (4.15)

If we let t denote the average delay on any channel, then the total

average delay becomes, Eq. (4.3),

T = ht (4.16)

Moreover, as a consequence of Eqs. (4.4), (4.5), (4.12) and (4.15) 9

t= 1 (4.17)

and 1 4
I T =jc r(4.18)T= C r

h NA

This is the result we were aiming at, which simply relates the delay T,

the traffic F, the channel capacity C and the network path length h.

Eq. (4.18) shows that the net is equivalent (with respect to

delay) to a single MIM1I queue with an input rate of r/NA and a service
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rate iiC/h. This observation leads to the definition of the network

utilization

h r
P LH (4.19)

The above definition will be used in the rest of the chapter, mainly

for normalization purposes.

4.1.2.2 A Scaling Scheme

Since the main objective here is to study routing in large

nets, it is necessary to specify the structure of those large nets with

respect to the size N, in some continuous way. Any such specification

*will be referred to as a scaling scheme (strategy).

As the network grows, a main objective of a scaling strategy

could be to maintain the same average delay T for a reasonable increase

of the total traffic r and of the network cost (channel capacity cost).

The total traffic r may be reasonably assumed to increase linearly with

the number of nodes. Which, due to the uniform traffic condition

(Yjk =Y)' is equivalent to assuming that the total input rate per node

is maintained constant. Let g denote the total input rate per node
divided by the degree of a node,I

1(-)y
R ( (4.20)

Note that y will be adjusted in order to maintain g constant. Conse-

quently and because of Eqs. (4.10), (4.11) and (4.18),

r NRg NAg (4.21)
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T (IC/h = g) (4.22)

In order to maintain a constant delay TO, with the above traf-

fic requirement, the channel capacity must be such that: (Eq. (4.18)).

C = h + (4.23)
T

which says that C must grow like the network path length h. If we let

C be a constant capacity, then the appropriate capacity scaling is
0

C = hC0  (4.24)

Notice that the ratio of total capacity to the total traffic is equal

to hCo/g. This indicates that for a linear growth of N and r, the

capacity required per message need only grow like h (e.g., h = T for

torus nets).

From the above considerations emerge two scaling schemes:

C =hC ;

Primal scaling: (4.25)
IT =T o  ..

(C = hC 0  "

Dual scaling: I " (4.26)
r = NAg0

The outcome of the primal scaling is a traffic r = NAg where

g = PC0 - l/To, and conversely the outcome of the dual scaling is a

constant delay T =(C 0 - go) . Such outcomes will not be true when

dealing with network models which take into account the updates and/or

the storage limitation.
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4.1.3 Continuous Modelling of the Hierarchical Routing

The objective here is to summarize the key variables governing

the behavior of hierarchical routing in a continuous (homogeneous)

approach.

Recall that a one level hierarchical routing (CER or OBR) is

simply the non-clustered routing (NCR) defined in Chapter 3. As a con-

sequence and throughout this chapter we will refer to the three routing

schemes (CER, OBR, NCR) as hierarchical routing schemes with the under-

standing that m = I refers to the NCR. Moreover, as observed from

previous considerations, the underlying clustering structure is com-

pletely defined, knowing the number of levels m. More specifically,

the value of m determines exactly the length of the table I = mN1/m.

subsequently, we can use the remark at the end of Section 3.3.3.2 to 1
discretize m and to find the corresponding degree vector n. Notice

that if m = 1 then £ = N, i.e., a full length table is utilized, which

corresponds to an NCR. To summarize, the underlying clustering struc-

ture of the hierarchical routing (OBR, CER, NCR) is characterized by

the single continuous variable m. For that reason m will be referred

to as the degree of clustering

Chapter 3 showed that the reduction in table length from Z = N

to 9 = T~I m, due to the hierarchical routing, is accompanied by an

increase in path length from h to hc . hc is characterized by Prop-

osition 3.1, which subsequently provides us with the basis for an

algorithmic computation of hc, given a specific network and a specific

MR scheme. Fortunately, the bounds derived in Chapter 3 will allow

us to undertake a worst and/or best case analytical performance
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evaluation of the hierarchical routing for the class of networks con-

sidered here. Recall that those networks constitute a subset of the
" 0

family studied in Chapter 3, hence we will be able to use the explicit

expressions for the relative bounds E or F as derived in Eqs. (3.41)

and (3.47).

Notice that, similar to the above, the bounds rely on the

continuous behavior of m, and more importantly, they are tight at m = 1.

These last observations will allow us to use the above continuous

approach in dealing with the hierarchical and no.a-hierarchical routing

schemes. The comparison between those two schemes simply reduces *n

the comparison of a hierarchical routing with m = I (NCR) to one with

m > 1 ((CER or OBR).

In summary, knowing the degree of clustering m, the increase

in path length is characterized by the relative bounds E or F. In

general E will be chosen, unless specified otherwise. Hence,

h < h < (1 + E)h (4.27)

S
and m=1 -> E= 0

Even with the above simple specifications of the hierarchical

adaptive routing scheme (i.e., m, E) the queueing analysis is still

far too complicated. This is true for any adaptive scheme because of

its dynamic nature. In the face of these difficulties, we will rely on

observations made about the deterministic routing assumption in Section w

4.1.1 to justify the modelling of a hierarchical adaptive routing by an

"equivalent" deterministic routing; hence the assumption below:
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Assumption 4.1

a. The performance of an adaptive hierarchical routing is

the same as that of a fixed routing policy whose routes satisfy

Proposition 3.1. That is, the length of the "fixed routing" paths are

equal to the minimum estimated path lengths as obtained with an ti-R.

b. The fixed routing specified above and operating on the

class of symetrical nets considered here, results in equal loads on ...

all channels. fg

Part (a), again motivated by an earlier remark on deterministic

routing, will become more accurate when we include in the model, based

on fixed routing, the line and storage utilization due to the adaptive

routing. Mokreover, if the main objective is to compare hierarchical

with non-hierarchical routing, then this assumption appears to be quite

acceptable.

Part (b) is motivated by the quite symmetrical structure of

the networks considered here, and also by the fact that the main objec-

tive of an adaptive policy is to balance the flows over all the channels

in the net.

Notice that, because of the above assumption, the NCR (t4IR

with m =1) is modelled by the shortest path fixed routing which, as

observed in Section 4.1.2.1, leads to the optimal flow assignment for

this class of nets.

6 Conclusion: ,

As a result of the above considerations, a hierarchical routing

is characterized by the degree of clustering, m, and the path length,
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h and can be modelled by a balanced fixed routing resulting in paths

of the same lengths.

4.2 A Queueing Model with No Updates and No Storage Limitation

In this section, we still temporarily relate the gains obtained

by hierarchical routing strictly to the relative table length ZIN. In

other words, we consider an ideal situation where infinite nodal storage

is available and where the line capacity used up by the update infor-

mation is still negligible. This is similar to the study in Section 3.3

except that we now intend to look at the degradation of the network

performance in terms of delay or throughput.

Based on the previous general conditions (Section 4.1) and-

the above remarks, this situation can be modelled by Kleinrock's model

(Section 4.1.1) where the fixed routing is as specified in Assumption

4.1.

The delay analysis, for our class of symetrical nets, is

reduced to the one performed in Section 4.1.2.1 except that h is to be

replaced by h c As a result the throughput-delay relation becomes 0-

(Eq. (4.18)).

Tc ~7~TiA(4.28) ~ *

Notice the change in notation from r to r and T to T .The subscript
c c7g]

is added mainly to differentiate between clustered and non-clustered

routing for later comparisons. The notation r', T will be strictly

reserved for the NCR and r c T for all hierarchical routing; of course,
c
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702
if m = 1 then rc = r and T = T. Similar to Eq. (4.16) and Eq. (4.21)

c '4

we will also let

T =ht , r =NAgc  (4.29)

where tc and gc are now variables.

The behavior of the hierarchical routing may now be studied

assuming either the primal or dual scaling schemes (see Section 4.1.2.2)

in order to specify the growth of our class of nets.

The numerical applications throughout this chapter will assume

the coefficients a, b, c, v as obtained for torus nets (Eq. 3.50)....

4.2.1 Degradation in Throughput at Constant Delay (Primal Scaling)

Recall that the primal scaling (PS) is characterized by

C =hC and T = Tc To (Eq. (4.25)) and also for an NCR hc = h, hence

from Eq. (4.28) the ratio of throughputs with and without clustering 
is p4

rc  hUCo/h - l/T 0

PC - 17T0

from the above expression the effect of clustering can be seen in the

reduction of the line capacity by a fraction h/hc .

We can now directly apply Proposition 3.4 to state a similar

asyjiptotic result. Namely, as N, the number of nodes, goes to infinity

the throughput at constant delay, obtained with an MHR (CER, OBR) with

a fixed m, approaches that of an NCR while the relative table length

(L/N) approaches zero.

As for the continuous behavior of r c/r versus X/N we use

* Eq. (4.27) to derive the bounds below. W
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0 1
Il+E T r

LB (r In) < 10 < <1 (4.30)
I0 To

LB( is used to denote the lower bound on the variable in parenthesis;

similarly, UB( )will be used to denote an upper bound.

Let us examine the behavior of r' c / by plotting its bounds

given in Eq. (4.30). Recall that throughout this chapter Eq. (3.52),

giving E and LIN, will be used in the numerical examples. This results -lm

- . in the curves shown in Figs. 4.1 - 4.3. The interpretation of those

polts is quite similar to that provided for Figs. 3.5 - 3.9 in Section

3.3.3. We reemphasize the fact that initial (substantial) table gains

(small m) can be obtained with a relatively small degradation in

throughput. Whereas larger table reduction (large 1m) may drive the

lower bound to zero. The asymptotic property is nicely illustrated in

the sharp behavior of the lower bound, for a large N, in Fig. 4.2.

Also, Fig. 4.3 shows that as N increases the cost incurred with a fixed

relative table length LIN goes to zero.

We note also that the curves in Figs 4.1-and 4.2 meet at the

point LIN =1, LB(r c In) 1. That point corresponds to mn 1 where

*the bound is tight.

1 Recall from Chapter 2 that most of the table reduction is obtained for
small values of mn, and the remaining reduction up to the global minimum
table length is obtained with quite a bit larger m (up to m.).
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4.2.2 Degradation of Delay at Constant Throughput per Node (Dual

Scaling)

We now intend to study the dual behavior by applying the dual

scaling, whose purpose is to maintain r/NA constant and to let Tc vary.

Let g = gc = g = r/NA and C =hC ; then the ratio of delays Tc/T is

from Eq. (4.28),

T C0 - go

-= C (4.31)T h- PCo - go
c " g0

Immediately we obtain the dual asymptotic result whereby as N goes to

infinity the network delay obtained with an MHR (m fixed) approaches

that of an NCR, while the relative table length goes to zero.

As for the general behavior of T /T versus ZIN, from Eq. (4.27)

c

1 < -Co pC0 - go (4.32)

1 + E go

The inverse of the above bounds are plotted in Fig. 4.4, in order to

show the behavior of T/T dual properties are exhibited. We also note c
that in some regions pC0/(l+E) < go, hence the corresponding degree of

clustering m is infeasible.

4.3 A Queueing Model with Updates and No Storage Limitation

Our previous models expressed the gains obtained from the

hierarchical routing strictly in terms of the relative table length

tIN. They left out the further (significant) savings incurred in line

capacity and nodal storage. As a result of this quite idealistic sit-

uation of abundance in capacity and storage, the NCR showed a better
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Figure 4.4. Degradation in Delay at Constant Throughput per Node;
Model with no Updates and no Storage Limitation.
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network performance than the WHR except at the limit of very large nets

where they were quite equivalent even for substantial table reductions.

This last (asymptotic) property makes us believe intuitively that in a

less idealistic situation (storage and capacity limitations) the M41R

* with the right degree of clustering will eventually (in terms of size)

outperform the NCR. Moreover we can already observe that if no cluster-

ing is introduced, the linear growth of a full length table (N entries)

with N will, at a certain point, use up all the nodal storage and the

line capacity (for the exchange of updates), hence driving the network

throughput to zero.

In this section we intend to account for the traffic generated

by the routing updates (in the evaluation of the X Is) while keeping
1

the infinite storage assumption.

As noticed earlier, the average delay in our class of symmet-

rical nets is very simply related to the average delay at any channel

(T = ht); therefore, we will first analyze a single channel and then

generalize to the whole net.

4.3.1 Priority Model for a Channel

* A simple and realiscic Head of Line (HOL) model [KLEI 76] is

considered here, mainly to capture the effects of updates on the average

time spent by a data message waiting to be transmitted on a channel.

* We assume that updates are originated at regular intervals of time

r (motivated by ARPANET). Aperiodic updates may be modelled by a "tno

1A data message is differentiated from an update message.
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update" model (Sections 4.2, 4.4) or by a certain distribution governing

their generation times. The latter possibility can be easily included

in the model below for such distribution as the Poisson distribution. G,

(However, no work has been done in that direction.)

In summary, our model for a channel consists of a single queue

operated with a HOL priority discipline and the following traffic "

characteristics.

i. Update traffic: Deterministic arrival process of

rate X . Constant message length 1/p u [kbt/messg].

ii. Data traffic: Poisson arrival process of rate A.

Exponential message length of mean l/V [kbt/messg].

iii. Queue discipline: HOL preemptive resume between data

and update traffic, with a higher priority for updates.

FCFS (first-come-first-serve) within each priority.

iv. Channel capacity: C [kbt/sec].

The "preemptive resume" assumption in (iii) is introduced to further

simplify the analysis of the model, which otherwise becomes quite

complex.

The above model is slightly different from the one analyzed by

Kleinrock [KLEI 76] where he considers the arrival processes of all the

types of customers (messages) to be governed by a Poisson distribution.

However, his methodology can still be used here in order to derive the

average time in system for a data message.

With regard to the update traffic, it simply sees a DIDI1

system; hence as long as Au < Ju C (A > . uC means that more than the

total capacity is required by the updates, thus the routing becomes
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infeasible) there is no queueing of update messages; whereas, an arriv-

ing data message will incur a delay from the message (data or update)

already in service, from data messages already in the queue and from

* updates arriving during its system time (see Fig. 4.5)

ARRIVING
DATA .- ... 2 X1  Y DATA OR UPDATE
MESSAGE

DATA

Figure 4.5. State of the Queue as seen by an Arriving Data Message.

* Let us now evaluate the different components involved in the delay of

a data message.

1. Delay due to messages already in queae. Let 46 denote the

expectation operator, n be the number of data messages (updates do not

join the queue) that our arriving data message finds in the queue, and

X . be the service required by the i thmessage; then the average wait

incurred is 49(E .X.

Clearly, X 2, X3 P ...p X n are identically distributed (expo-

nential distribution of mean 1/pi); the question arises as to the

* distribution of X1, the service (entire or remaining) time of the data

message in the front of the queue (see Fig. 4.5) which, as such, could

have been preempted several times in the past. Fortunately, because

g of our exponential distribution assumption for data messages, the

remaining service time is also exponentially distributed no matter how

many times that message has been preempted. Hence ot te !
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where n is the average number in queue as seen by our arriving message.

Since data arrivals are Poisson, then the distribution of n is the same

as the distribution of the number of messages in the queue at any arbi-

trary time. Therefore, if t is the average time in system (queueing +

service) for a data message, then because of the previous remark and

from Little's results, n = A(t - 1/PC).

2. Delay due to the message in service. Let Y be the

residual life (remaining service time) of the message in service. 9'(Y) 5

is the contribution in delay that we need to evaluate. Conditioning on

the type of message in service, it is clear that

* 6'(Y) O 6[residual life of data message]
AC

+ 6' [residual life of update message]* ]J~

u 1

Hence, g (Y)= + ~ lu

3. Delay due to up dates arriving while in system. A data

message spends an average time t in the systema. During that time, on

the average, A t update messages arrive and get serviced; hence theu
average wait time incurred is A t 1/pi C. Notice that even thoughu u

0 update arrivals are deterministic, their relative positions with respect

to data messages are completely random due to the Poisson distribution

of data arrivals.

6 Finally summing up all the waits incurred by our arriving

message and its own service time, we arrive at
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.- t-- + [c + 2(uC + u t

+ u

PC 2 [iiC] 2

Hence t = (4.33)

If we set A = 0 in the above equation (i.e., if we neglect updates)
U"

then we arrive at the original expression for t, Eq. (4.17). The

difference between the two equations illustrates the effect of the

updates.

4.3.2 Network Model

Similar to the previous model, Assumption 4.1 results in equal

channel loads of data messages X (X = h cr/NA). Moreover because of

the periodic update assumption, all channels will receive an equal rate

of updates A .u

With regard to the delay analysis for our class of symmetrical --

networks, Eqs. (4.10) - (4.16) are still valid when we replace h by h
C

Using a similar notation as in Section 4.2 (t, tc , h, hc, T, Tc, r, rc,

g, gc) , we arrive at the throughput-delay relation below which charac-

terizes the performance of the hierarchical routing.

X
1 + u

T =h u u (4.34)
Tc c r P

c- hc - u
u
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Recall that the size of an update message, 1/pu, is fixed and propor-

tional to the length £ (I = mNl/) of the routing table. Hence, it is

of the form I/pu = £ where c is the inverse of the number of entries

which add to 1 kbt. As an example, in the ARPANET, an entry requires

16 bits of storage, hence e = .016 = 1/62.5. For further normalization

with respect to the average data message, I/p, we choose c such that

1 £. ,(4.35)

(In the numerical examples we will, in general, choose I/p = 1 kbt and

e = 1/64.)

The behavior of the hierarchical routing may now be studied

for networks whose growth is governed by our scaling schemes.

4.3.3 Performance Evaluation of the Hierarchical Routing
0

The primal and dual scaling schemes, Eqs. (4.25) - (4.26) need

further specifications as to the choice of the update rate X in termsu

of the network parameters.
S

4.3.3.1 Scaling of A

u

Let us recall that the main purpose of the routing updates is

to provide the routing decision algorithm with a good estimate of the

state of the network. Since at each update, exchange of information

(not necessarily synchronized among all nodes) occurs only between

neighboring nodes, then the propogation of a change occuring in a cer-

tain region of the net to another region might require a number of

updates equal to the distance separating the two regions. Consequently,
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as the network grows and if we wish a change, conveyed through the

exchange of updates, to reach remote areas within reasonable time, then

it is necessary to increase the update rate as N increases. We may also

argue the "very" remote areas would not be as concerned with that change

as the closer ones, thus the update rate probably need not increase

as fast as N. A realistic compromise would consist in the use of higher

update rates (as N increases) but only to propagate less and less infor-

mation about a region as we move away from that region. This remark is

again a key motivation behind the hierarchical routing.

From the above considerations emerge three possible specifi-

cations for X
u

1. A 0
=constant

u u

ii. X hX0 aNv X XA for a torusu u u 2 u

iii. u ay u/X NI1  u for a torus

Choice (i) represents a worst-case condition whereby the

update rate is insensitive to the increase in network size.

Choice (ii) appears to be more intuitive since the update

information needs on the order of h (average path) periods to percolate

throughout the net.

Choice (iii) is a compromise between the two above; it indi-

cates that routing information need not percolate as fast in the entire

0- 1/2net, but only within a certain area comprising roughly N nodes. ---

We consider these three choices below.
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4.3.3.2 Throughput at Constant Delay (Primal Scaling)
With the priml scaling, C - hC0 and T To , the network

throughput is (Eqs. (4.34) and (4.35))
rc h XX u  C2 Z2

C0 K _T (4.36)
WA_ R_ C0  To hN hc  c ._

For any routing to be feasible, the right hand side of the above

equation must be positive.

Asymptotic Behavior

As the number of nodes goes to infinity and under the con-

straint on A below (Eq. (4.37)), for a hierarchical routing to be

feasible, its number of levels m must be greater than or equal to a

certain value, m0 . Moreover, the asymptotic throughput (Eq. (4.38))

shows that at the limit, with any feasible hierarchical routing

(m fixed), the effect of the updates on the channel utilization becomes

negligible.

The condition on A is such that there exists m0 which

satisfies

2 2 2/inC m0 Xu-

limit = 0 (4.37)
N-=a 21CoToaN 

,

This condition is motivated by the fact that the predominant term

(as N * a) in Eq. (4.36) must go to zero as N * for any hierarchical

routing to be feasible. (Notice that we replaced, in that term, Z by

.l/m and h by aNv)

The proof of the above fact follows very simply:
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Let m be fixed and m > mo; then from Proposition 3.4, limit h/hc = 1,
u

and from Eq. (4.37), limit -h 0 = ; hence
N-o c -

limit = (4.38)

which terminates the proof of the above fact.

The above limiting throughput is equal to that obtained in our 2
previous model where no updates are considered. It is a more realistic

result because now only a feasible routing (m > mO) can achieve that

performance. This brings us to a consideration of the range of m0 in

terms of the specific choice ot A. Let X be of the form X = Nu u u

(0 < x < 1); then for the limit in Eq. (4.37) to be true, m 0 must be

such that

2" + x- v <0

2
Thus 0 <L < v -x

i0

For the above relation to be possible, x must be less than v with this

condition "0.

~Mo > - 2
v - x

Applying this result to our selected scaling schemes for Aup and using

the fact that 0 < v < 1, we arrive at

0
Au Xu ->x=0 -> m > 2/v> 2

vO0
S-aN -> x =v infeasibleu u

A = aN v/2A > x v/2 -> m > 4/v> 4
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As a consequence only the first and third schemes may yield a feasible

hierarchical routing. Moreover a non-hierarchical routing is always

infeasible at the limit of very large networks.

The above properties are illustrated in the numerical study

below.

General Behavior

Similar to Section 4.2.1, a lower and upper bound on the

throughput can be derived using Eqs. (4.27) and (4.36).

r 1  [e X u 1 u 2.t2

LB A I + PC0  h T0  2UC 0T0h (4.39)

-rc cau 1 ) u (4.40)
\A -=C 0  h To 2uJCoT 0h

Let us examine the behavior of fc/NA with respect to N and m by plotting

its bounds normalized by the maximum throughput (per channel r/NA),

Eq. (4.38); i.e., we will plot

LB(r /NA) UB(r /NA)
C lITo and C l/T0

The values selected for the different variables are:

e *c = 6 messg/sec S

TO  .5 sec
0
u = .07 C0

Lu 1/64 3

Recall that E and Z are given in Eq. (3.52).
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Three sets of curves are shown in Figs. 4.6 -4.8 and corre-

spond respectively to the three specifications of XU, i.e., Au = A

X N" 4 A0 /2, Au N N1 2 0/2. A few remarks emerge from the

observations of those figures.

Remark 1: Optimal degree of clustering

Lower and upper bound envelopes are also plotted (by hand) on

each of those figures. As a result, hierarchical routings with the

appropriate degree of clustering m, will achieve a throughput (normal

ized) in the region comprised between the lower and upper envelopes.

The optimal m corresponding to a particular envelope can be

determined numerically as well as the envelope itself. Such an oper-

ation can as easily be done by hand for the graphs presented here.

Given N, choosing m on the lower bound envelope (Fig. 4.6) guarantees

a minimum throughput equal to the corresponding point on the envelope.

Fig. 4.9 shows the relative table length (obtained with those values

of m) respective to Fig. 4.6, and also the discretized number of levels

(as suggested in Section 3.3.3.2).

Remark 2: Feasibility and viability

d The fact that the lower bound and upper bound, for a specific

set of parameters, become closer for small values of r and meet atc

r = 0 indicates, first, up to what size N a certain degree of cluster-

* ing is feasible, and second, that the points r =0 occur when the line

capacities are totally utilized by the updates.

Table 4.1 below, shows approximate values of the points where
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a non-hierarchical routing (m = 1) becomes infeasible and also shows

the points beyond which a 2-level hierarchical routing becomes certainly

(due to a lower bound) more viable. Notice that the faster the rate

of update exchange X is, the smaller those critical values of N are.

u

Points at which NCR Points beyond which
becomes infeasible clustering is better
r = o m- 1)

X x0  N 2000 N 200
u u

X0 N
1 / 4

S=1000 =150u 2
1/ 2

uN 300 100

Table 4.1 Critical Values of N

Remark 3: Asymptotic behavior
0 o 1/4X 0

The shape of the lower bound envelopes for Au X , Nu ' 2,

show an initially decreasing and then slowly increasing behavior with

respect to N; the increase will eventually bring the curves closer to

their asymptote 1. However, for X = N1  the lower bound enve-
u

lope is a decreasing function of N which, as predicted earlier, will

eventually reach zero. This means that in the neighborhood of a certain

size N, the hierarchical routing altogether becomes infeasible. For-

8
tunately, that size is well beyond 10 1

4.3.3.3 Delay at Constant Throughput per Node (Dual Scaling)

r /NA is maintained constant, i.e., rc/NA =go hence
c c N 0  ec
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X 2 2

1---

u E2.
+ 2pC h

T= h 0 e A (4.41)

h 11-C go h

c c

Again, applying Eq. (4.27), we derive an upper and a lower bound on T

+ Au C2 12

JB1(T + 2 h(.C0  hCc) = 1 r -£ etu (4.42)

1+ E Cgo

1 + u '
2pC0  h .

LB(T = 21.% (4.4h)

PC -~ U g0 h g

Dual properties to the primal scaling hold true here and are illustrated

in the curves shown in Figs. 4.10 and 4.11.

Notice also that under the condition of Eq. (4.37) and for a

given m, m > mo; then

limit T = 1
N C - goo

which is the dual of Eq. 4.38, and is used to normalize the values of

Tc in the plots.

4.4 A Queueing Model with No Updates and with Storage Limitation

For large networks, the earlier infinite nodal storage assump-

tion becomes less reasonable. The purpose of this section is to develop

and analyze a Kleinrock-like model which takes into consideration the

4W4
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limitation of nodal storage. Then based on that model, we study the

behavior of hierarchical routing as applied to the class of symmetrical

networks. We choose not to account for the effect of updates on the

line capacity utilization, in order both to model situations where

updates can be neglected and, mainly, to isolate the consequences of

finite nodal storage on the network performance.

Similar to the previous section, this study will also demon-

* strate a remarkable efficiency of hierarchical routing in large

networks.

4.4.1 A Loss-Queueing Model for Symetrical Networks

4.4.1.1 The Model

Again we consider the class of symmetrical networks and, in

addition, a constraint is imposed on the number of buffers reserved for

the store-and-forward function. As a result of the limited storage,

* - three issues arise: the validity of the exponential message length

distribution; the fate of the rejected messages; and the sharing of the

pool of SIP buffers among the outgoing channels.

With respect to the message length, it is clear that a maximum

* size must be imposed, as is always the case in practical situations.0

As an example, in the ARPANET the maximum packet size is equal to 1008

data bits. The IMP S/F storage is divided into buffers (pages), each

* of which can accomodate a maximum size packet and cannot be utilized

by more than one packet at a time. As a result, one might feel that

the assumption of exponentially distributed packets should be replaced

* with a constant length packet assumption. However, measurements on the
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ARPANET [KLEI 74] have shown that the average size of a data message is

roughly 250 bits. The fact that the average message length is much

smaller than the buffer size, and recognizing that messages which do

not fit in a single buffer occur with a very small probability (and

hence can be neglected), motivates us to keep the exponential message

length assumption. A better approximation would be to assume a trun-

cated exponential message length distribution, but this makes the

analysis much more complicated and no closed form solution has been

obtained [0-lU 69].

As for the rejected messages, they can be either transmitted

by the sending node (after a time-out, as in the ARPANET) or considered

as lost (as with blocked telephone calls). The retransmission mode is

what actually prevails in general S/F networks like the ARPANET, NPL,

etc. However, this mode introduces strong dependencies among the sto-

chastic behavior of neighboring (and even more distant) nodes [ZEIG 71]

to the point that an analysis seems out of reach. As a result, we will

restrict our considerations to a loss model, in which case the depen-

dencies between nodes due to storage limitation are eliminated.

Finally with respect to the sharing of the pool of S/F buffers

between the outgoing channels, the S/F function of a node can be rep-

resented as in Fig. 4.12a. There, we see that accepted messages are

first submitted to the routing policy and then conceptually join a pool

of buffers (B buffers). The routing decision is assumed to be fixed

(hence independent of buffer utilization). As a consequence, a node

1 Recall the single packet messages assumption.
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is equivalent to R single queueing systems which share a pool of B

buffers under some scheme. A given channel can only serve messages

routed to that channel; hence messages can be considered as forming R

classes of customers, and those pertaining to class i are to be uniquely

served by the it channel of that node i = 1, 2, ... , R (see Fig.

4.12b). Also similar to the independence assumption (KLEI 64], we will

assume that nodes (channels in different nodes) are stochastically

independent and that the input streams at each node are governed by

independent Poisson distributions.

As a result of the above considerations and assumptions intro-

duced along with them, the network can be considered as a collection of

S independent nodes, each of which can be modelled as R MIM1l queues

sharing a waiting room of size B. The traffic offered at each node is

governed by a fixed routing decision, and the probability of blocking

at a node is a function of the sharing scheme utilized. Several such

schemes are proposed and studied in Appendix B. We list among them:

complete sharing (CS); sharing with a constraint on a maximum queue

length (SMXQ); sharing with a minimum allocation of buffers per queue

(SMA), etc.

*0
4.4.1.2 Analysis

We first consider a few remarks before we proceed with the

analysis. Because of the symmetry of our class of networks, we assume

that the fixed routing results in equal offered loads on the channels.

The offered load X is defined as the input rate of traffic before

acceptance or rejection by a node. Moreover, all nodes are assumed to
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contain the same number of buffers B and to use the same buffer sharing

strategy. As a result, the probability of blocking (to be denoted by

PB is the same at all nodes.

Because of the possiblity of loss of messages, the offered

external traffic r is no longer equal to the throughput of the network,

which we denote by r (s for successful traffic). In what follows, weS

intend to find r and the average delay T of the successful traffic.
S

Throughput versus load

r is now referred to as the traffic load. Let us define P
5

as the probability that in a steady state, a message transmitted over

the network reaches its destination successfully. Clearly

P r s/r (4.44)

Let h be the discrete random variable representing the distance

in hops between any pair of nodes, as derived from the fixed routing

policy. Also, let P r[h = k] be the fraction of node-pairs at distance k

and H(z) the corresponding z-transform, i.e., H(z) kZP[h = k]. W.

(See Appendix A, Section A.4 for more details and for the computation

of H(z) for a torus net.)

Because of the uniform traffic assumption,

fi P r [message successful/message travels over k hops] P =[h k]

k>l

Since nodes are assumed independent, the probability that a message is

not rejected over k hops is [1-P BI. Notice that a generated message

is subject to rejection, whereas a message reaching its destination

is always accepted. Thus -_
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Ps [1 - PBkPr[h= k]"

S k>l B r

And from Eq. (A. 2S),

P= H(l - P (4.45)s- B

Hence

s = H(1 - PB)r (4.46)

Relation between the load r and the total offered internal traffic A

A is now the sum of the offered input rates to all the network

channels. With the above definition of X, the relation A : NAX still

holds true. However Eq. (4.6) (A nF) is no longer true due to the

possible loss of messages. A similar approach, as used for the

derivation of Eq. (4.6) in [KLEI 64], is considered here to derive a

relation between A and r -

The contribution of yst the rate of traffic from s to t

CYst =y), to A is i -.

h
hst-l (11 - I st

S'st B P 'stk=O

The proof goes as follows: if hst is the length (in hops) of the

unique path from s to t, then the contribution of y to the 1 st hop 0

nd
(i.e., node s) is y to the 2 hop, yst(l - P and in general,

th -
to the kth hop it is y The rest of the proof is obvious.

0 Recall that r = N(N - l)y and yst= y then "

h
A (1 PB) s]A - N(N -1)
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Grouping together all paths of length k and using Eqs. (A.24) and (A.25)

we arrive at

A- = F1 - (1 - PBkrh = kl'

1 1(1 1 P 
P B rBL k>l -

I H(l P) 1- P
hence A=r = r (4.47) -rB PB

The above relation (and Eq. (4.46)) is quite general; it only assumes

that all nodes are independent and have an equal probability of blocking

PB" H(z) can be determined analytically or numerically given a partic-

ular network and the associated fixed routing policy.

Notice that if PB = O, i.e., infinite nodal storage assumption,

Eq. (4.47) becomes undefined; however, the application of L'Hopital's

rule results in A = H'(l)r. H'(l) is, in fact, equal to the average

network path length; hence we are back to the expreszion derived in

[KLEI 64] (i.e., A = iii).

Average delay of successful traffic

Due to the symmetry of our class of nets, a non-rejected

message will incur the same delay t at each hop; therefore the average

network delay is,

T= nst

where ns is the average path length of the successful traffic. Note

that h is no longer the average path length; this is intuitively due

to the fact that messages which travel on longer paths are more likely

to be rejected. Therefore, we expect ns to be, in general, smaller

than h. The determination of n follows similar to that of P.
s s
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Let . be the rate of successful traffic from node j to node k, andLYjk.

hik the path length between the two nodes, then obviously
" -" s hk

h.

jk = ( - P) jk

Also, the sum of is what we have defined as r Then, from the
jk s -

definition of the average path length (Eq. (A.3)),

YS Yh 1khjk jk
skj k iB jkh"n = s = i I S " P B)  y jk hjk ..

j k

Recall that y Y and r = N(N - 1)y; thus
hjk  hY';

r jkk
(1 Pins  r (1 PB) N (N- 1)

s j k BN

Grouping together all paths of length k, we arrive at

r (1 P kPhk
ns =s (1-PkkPr[h =k] ""

~ s kzJ

From the definition of H(z) (Eq. (A.25) and Eqs. (4.44),(4.46)), we

find

1 - PB H'( -PB) (4.48)
n= H'(I - = ( B - H(l Pn Ps - B)' '

where H'(z) is the derivative of H(z) with respect to z.

Note that if PB = 0, then n = h (recall that H'(l) = h and
S

H(l) =1).

If we let P 1 and apply l'Hopital's rule to the above
B

equation (recall that H(0) = 0), we arrive at ns = 1. This result
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indicates that at the limit (PB 4 1) only 1-hop traffic may still be

successful.

Probability of Blocking

As noticed earlier, a node may be modelled by R MIM{1 queueing

systems with a shared finite waiting room of size B. Each server is

offered an input rate A (A = A/NA, Eq. (4.47)), and has a service rate

equal to pC. Among the sharing schemes studied in Appendix B, complete

sharing is optimal when p is small. Below, we show that the

maximum throughput r is obtained for a load, say rm, which is such

that p < 1; moreover in order to maintain a good network performance

some control should be introduced in order to keep the offered load at

a level less than or equal to F . As a result it seems reasonable to
m

choose a complete sharing (CS) scheme. However if a retransmission

mode is used or if the channels receive very unbalanced traffic loads

then a different scheme may be necessary.

The analysis of. the CS scheme in Appendix B leads to an

expression of PB in terms of X/pC, Eq. (B.33), which, combined with

Eq. (4.47) results in the system of equations below.

1 - HIl - PB] r (a) ,( A= PB (a)

(4.49)

(P R- 1 (b)/C(

K 0 R - 1 .. "-
K=O I1L
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Also the average delay per channel, t, for successful traffic is given

by Eq. (B.37) hence

____K B (+ Rl) ) (B +R 1~~~

T~n 1 1/11C K=0 \OC
/s  - AIPC B-1 K (4.50)- (- R - 1 Xwe

K= 0-

The above system of equations (4.49a-b), may be solved numer-

i.zally. A numerical algorithm will be presented below. Once we know A

and PB' we can determine the performance of the net in terms of

throughput r and delay T. Before we proceed, let us derive the limit-
s

ing throughput of the network obtained with an infinite traffic load.

Limiting throughput

We claim that

limit r= B H'(0)NApC (4.51)r - s B + R - I i--
r oo

Proof:

From the determination of A we see that A > r/RN (i.e., A is

greater than 1/R the traffic generated at the node itself), hence

r - => A - Also from Eq. (4.49b) it is clear that

B Pw iB =1 B + R- + 0 A) (4.52)

, where 0(I/X) is such that limit AO(I/A) = 0. Thus, limit PB 1.
0o ... CO

Now from Eq. (4.49a) we see tbAt P i 1 => A = r/NA. As a result,
B

1S-1
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NA
limit 1 NA
r oo

Also from Eq. (4.52)

limit N (1 - B = B + R - 1 iC
r 0oN

Now from Eq. (4.46)

=H(I PB) = (i - PB)rH'(O) + -B
)

Then, combining the above facts, we arrive at Eq. (4.51).

This limiting result has the following simple interpretation.

First, note that H'(O) = P [h 1] is the fraction of pairs of nodes

at distance one (i.e., neighboring nodes), and (BUC/(B + R - 1) is the

limiting throughput of any channel of the R MIM 11 system of queues

(see Eq. (8.39)). As a result, the limiting throughput represents the

fraction of successful traffic which has to travel over a single hop.

The other fraction (finite) of initially successful traffic has to

travel over at least another hop; in trying to do so, it will compete .

with an infinite amount of traffic generated at the next node, and thus

it will be rejected. This checks with the previous result: P B 1=->n s  1.

Algorithm for the solution of Eq. (4.49)

Let us study the behavior of the two equations (4.49 a - b)

i. Variation of X versus PB' Eq. (4.49a). Differentiating

Eq. (4.49a) with respect the PB' we find
BA
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PBH' I  P - 1+11 [1 PB]

dPB NA 2

From the definition of H(z), Eq. (A.25)

H'(z) = 2 kzk-lP = k]
k>l

2ndLet z = 1 - PB the numerator of the 2 fraction becomes

Y = (1 - z)H'(z) - I + H(z)

Y=X [zk _ 1 + (1 -z)kz k - l Pr[h =k]
k>l

Let Xk be the quantity in brackets .

dXk k-2

-= k(k 1)z (1- z)

Hence for 0 < z < 1, dXk/dz > 0, thus Xk is an increasing function of

z and finally Y is an increasing function of z. When z varies from

0 to 1, i.e., when PB varies from 1 to 0, Y varies from Hi(0)- 1 to 0.

Since H'(O) = P [h = 1], then H'(0) - 1 < 0 and Y < 0 * z e [0.1].

Therefore, A is a decreasing function of PB (see Fig. 4.13) and from

previous remarks: PB = 1 => X = P/NA; PB = 0 => X = hr/NA.

ii. Variation of PB with respect to X , Eq. (4.49b)

It can be easily shown that the derivative of PB with respect

to A is always positive. Thus PB is an increasing function of X. Also
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0 > 0 , dP B/dX= 0 ~1

A co> 01 P dP /d 0
BB

PSN

0
I'/NA hr/NAx

Figure 4.13. Solution of Eq. (4.49).

iii. Algorithm.

Fig. (4.13) shows that there is a unique solution to Eq.

(4.49). The numerical evaluation is straightforward, and can use any

converging iteration procedure. Namely, let us consider the sequences
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I and PB such that,

r1 => PB
A B

1 2Xt f(P )=> PB
2 1 0 B B

k-i 'k
A f(P ~ => P

where the X 's are computed from Eq. (4.49a) and the Pk s from Eq.

k B

(4.49b). Obviously, Xv = limit X is the solution of the system of
00 k

equations. In practice, we stop the search when jk - < 6

where 6 is a certain tolerance.

We are now ready to consider a numerical example.

4.4.1.3 Application of the Loss Model to Torus Networks .

Let us consider a torus (i.e., R = 4) operated with a fixed

shortest path routing whose z-transform is given by Eq. (A.41) (where

P = JN). Of interest is the study of the behavior of the successful

traffic r with respect to the load r, as well as the behavior of theS "

delay T with respect to r or rs . 5O

Numerical results are shown in Figs. 4.14 - 4.17. Those

results were obtained for N = 121, 6 = 10 - , and VC = 20 msg/sec.

More precisely, the graphs show the normalized traffic and

delay. The normalization is based on Eq. (4.19) which defines the

utilization of the net, and on Eq. (4.18). Thus the curves show the

variables
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Figs. 4.14 and 4.15 show (linear and semi-log abscissa) that as F

increases, r increases to a maximum value and then decreases to its

limiting value in Eq. (4.51). These results are similar to that of

a contention system [TOBA 74], [LAM 74], except that the non-

retransmission (loss) of rejected messages eliminates the possibility

of unstable states.

Note that if B = then r5 is equal to r for p varying from

0 to 1. For p > 1 a steady state solution does not exist. This is no

longer true for a finite buffer size. However, with limited storage,

as p increases beyond 1, the throughput decreases quite a bit and thus

more messages are being lost. Another effect of finite storage is

reflected in the behavior of the average delay T which asymptotically
S

reaches a constant value as p goes to infinity (see Fig. 4.16). Since

for p (i.e., r c) only 1-hop traffic may be successful (see

Eq. (4.51)), then the asymptotic value of T corresponds to the delay

on one hop (i.e., at one node) under the condition of an infinite input

rate. From Eq. (B.39), that value for one node is: limit VCt =

B/(B + R - 1); thus limit pCT/h = B/[(B + R - 1)h].

Fig. 4.17 illustrates the behavior of T versus r s  Note that

to a given r correspond 2 points on the curve. This is due to the

s

fact that there are two possible values of r which lead to a specific

value of Frs (see Fig. 4.14).

With regard to the number of buffers B, the plots show initial

substantial improvements in maximum throughput as B increases, and
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Figure 4.15. pversus p; semi-log Representation.
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Figure 4.16. Normalized Delay pACOT versus Load p, for a 121 Node Torus with Storage
Limitation.
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Figure 4.17. Normalized Dei'y pA CO, versus Throughput p1. for a 121 -Node Torus with Storage
Limitation.
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W 74

costlier ones when we reach values of P5 approximately between 0.8 and

0.9. This phenomenon is better shown in Fig. 4.18 where the probability

of loss, 1 - Ps, is plotted versus the normalized load for different

values of B. Finally, Fig. 4.19 shows the behavior of ns normalized by

h, with respect to 1 - P

In summary, we are now able to evaluate the importance of buf-

fer storage, and as expected, small values of B can degrade the network

performance quite a bit. For the example above, B = 20 reduces the

performance to roughly 0.68 that which could otherwise be obtained with

an infinite number of buffers.

4.4.2 Performance Evaluation of Hierarchical Routing ..V

The above model and Assumption 4.1 will now allow us to study

the behavior of hierarchical routing for the class of symmetrical nets.

The scaling schemes need further specification as to the scaling of the

nodal storage (B).

4.4.2.1 A Buffer Scaling Scheme

As seen in the conclusions above, the effect of B is naturally

characterized by the maximum throughput rs or using our normalized

notations, it is characterized by the maximum of =s hri' /paaA. Under

the conditions of Section 4.1.2, the primal scaling scheme maintained

p c(,nstant as N varied. It is now natural to attempt to keep maximum

ps constant. With this objective in mind, let us observe the effect of

storage limitation first, in a single node situation, then in a network

environment. From Eq. (4.49b) we see that PB depends only on A/pC and

B. Thus a scaling which maintains X/pC and B constant will result in

a constant PB, Recall that under the conditions of Section 4.1.2,
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X - hr/NA; hence X/pC is just our previous p that the scaling maintained

constant.

In a network environment keeping P constant will still result
B

in a smaller probability of success Ps as the network grows. This comes
5v

about because of the increase in network path length (aNv) which results

from a larger N. It is then necessary to increase B with N, in order

to maintain p constant.
sr

An ad-hoc (heuristic) scaling scheme of B has been devised

which, as we will see, satisfies our needs to a large extent. Such a

scheme is

[e= B0 In hi (4.53)

This scheme has been tested on the torus nets as shown in Fig. 4.20

where p5 is plotted versus p for a set of values of N and two

values of B0' We notice that the maxima of ps occur for roughly the

same value of P. The curves (except for N = 25) are also fairly close

to each other up to and somewhat beyond the maxima. Since, in fact,

networks must be operated in that range and since we are dealing with

large networks, this scaling scheme appears to be fairly satisfactory.

The aforementioned figures showed the overall behavior of Ps4 0O

versus p for a set of values of N. If we restrict our ovservations to

the maximum throughput ps' we obtain the curves shown in Fig. 4.21.

Those curves were obtained using the combined scaling scheme
' c --

hC0  (4.54)

B 0 in h.
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Figure 4.20 Buffer Scaling: Normalized Throughput versus Normalized Load.
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and for a maximum P determined with or without a constraint on the

average delay T. The maximum ps is computed numerically using a

Fibonacci search [ZANG 69]. The probability of success P. the

normalized delay ViCT/h, and the normalized average path length n /h
s

at those maxima of Ps, are shown respectively in Figs. 4.22 and 4.23.

A few remarks emerge from the observations of those graphs:

i. The curves of max P with no constraint on T, and that

of the corresponding T, show again that our scaling scheme is quite

acceptable, especially when N > 1000. For that range of N, the maxima

of Ps are between 0.7 and 0.8.

ii. The fact that max P with the constraint T < 1 becomes

constant (= .74) for N roughly greater than 105 can be explained as

n
follows. Figs. 4.22 and 4.23 show that the corresponding P and s/h

are equal to one for the same range of N. This means that at such a

load, B is large enough to give a negligible loss; hence it is safe to 1
use the earlier model based on the infinite nodal storage assumption

see Section 4.1.2). That model predicts, with C = hC and T = T = 1,
0 0T-1"h

a value of r/NA =PC - T Thus we expect max P 1> N_
0 0 Cs ..C NA

1 -VC .7, which checks with the value found in the plots.

A final question arises as to the sensitivity of the above

results to the scaling of C. For that purpose, let us prove the fol-

lowing proposition.

Consider a symmetrical net of size N, which is such that all

channels are of capacity C1 or C2. Then network loads proportional to

the capacity assigned, result, for a fixed B, in throughputs propor- -

tional to the capacities, i.e.,
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PC PC (455S)
liC1  iiC2  (JC1T1 = 1C2T2

where r s, ri and T are the load, throughput and delay with assignment

C. (i = 1, 2)

Proof

Let X and P(l) be the unique solution of Eq. (4.49) for1 B

r = rI and C = V It is obvious that X2 = IiC 2 /PCI and P(2) = pl)

is the unique solution of Eq. (4.49) for r = r and C = C This fact2 2*

combined with Eqs. (4.46) and (4.50) proves the above proposition.

As a result, the normalized notation (p, ps) is not sensitive

to the particular capacity assignment for a given N and B, i.e.,

P, P > Ps P,
2 5

The above property implies that the same curves as in Fig. 4.20 .
can be obtained with any capacity assignment for a given N and R. -I
Moreover, the maxima of ps are also insensitive to the particular choice

of capacity (recall that all channel capacities are equal) at a given

N and P. This implies that all the points in the curves in Figs. 4.21 -

4.23 depend only on N and the buffer scaling.

With the capacity scaling C = hC0  P s becomes

1 s (4.56)

F which indicates that if the scaling of B keeps p5 constant, then the
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scaling of C will keep the throughput per node constant, and that ful-

*i fills our objective.

4.4.2.2 Behavior of the Hierarchical Routing

Recall that Assumption 4.1 leads us to consider a fixed routing

to model an adaptive hierarchical routing. Provided we know the distri-

bution of the path length of the equivalent routing, we can use the loss

model and scaling scheme to predict the behavior of such routing schemes

as m and N vary. Once again, we use the bounds of Chapter 3 to charac-

terize the message path lengths which result from a hierarchical routing.

Distribution of Path Length

Since the distribution of path iength deals with paths on a

node-pair basis, we can no longer use the bound E, which was only valid

for the average distance. Fortunately Lemma 3.2 (see Eq. (3.29)) pro-

vides us with the more general bound on individual paths (to be denoted

by A) m-1
hc hd s,tst - st- k-: "Vst

k=l

However this bound, always true for CER, is only valid with OBR if s,t -
r

belong to a lower level cluster than C (see Eq. (3.31)). The fact that
m

first, A is a very generous bound, and second that we expect OBR to

behave better than CER makes us feel confident to use A as an approxi- 0

mation on paths for the OBR scheme. Note that a rigorous but extremely
mC

generous bound, may be obtained from Lemma 3.1 (ht < E d.
k=l "

From Eq. (3.46) and for our class of networks, A is simply equal to hF

(see Eqs. (3.46) and (3.47)); and for an optimal clustering of degree m

Nv _v/m :

A = b NV + - 1) (4.57)
N 1
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Note again that m 1 A =O.

A "best case" and a "worst case" distribution can now be

C C
defined if we assume respectively that hct = h and h5t = h + A.s hst s hst + A

To the "best case" distribution corresponds the z-transform

H(z) of the shortest paths in the network.

The z-transform Hc (z) of the worst case distribution can be

exprssed in terms of H(z) and A, as follows

Hc(Z) = z H(z) (4.58)
c~o

To prove the above equation, let h be the deterministic random variable
-C

representing the path length, then

P r[hc =k] =P r[h= k -A] k >

Thus

k A
H c(z) = z p[hc k]= z z'P r[h= ic k>A i>O

which proves Eq. (4.58).

The above remark that m = 1 > A - 0 implies also that

m = 1 => Hc (z) = H(z). This fortunate property preserves the conti-

nuity of hierarchical routings.

Buffer Assignment and Feasibility

Recall that in this study we intend to account for the storage

utilized by the routing tables. The size of such a storage is a linear

function of the table length and counted in number of buffers it is

equal to [ 2.1
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where l/E2 is the number of entries which fit in one buffer. As a

consequence, if the total number of buffers to be shared between the

routing table and the S/F function is as defined in Eq. (4.53), then

the number of buffers strictly reserved for the S/F function is

B =FBO in hi- FE2t1 (4.59)

With an optimal clustering of degree m, and for our class of symmetrical

nets (h = aNv), the above equation becomes

B = [Bo(ln a + vlnN) - [E2mN/Ml (4.60)

For a hierarchical routing to be feasible, B must be greater than or

equal to one. Observing Eq. (4.60) we may conclude that:

i. For a fixed m, the routing becomes infeasible for networks

of size larger than a critical number Nc . N is the solution of B = 0
c c

in Eq. (4.60) and it is, obviously, an increasing function of m.

ii. For very large networks, and under the condition

By > C2e , only a hierarchical routing operating with a global minimum

table length is feasible, i.e., m = m, = In N; hence Z = /m= e In N.

In summary, as N gets larger, it becomes imperative to move

toward more clustering, eventually reaching a globally minimum table

length. The decision to use a higher degree of clustering m should be "

weighed against the degradation incurred by the corresponding increase

in network path length. This phenomenon is illustrated in the next

section. V''

Numerical Application

From the above considerations, the application of the loss
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model to a network operated with a hierarchical routing results in the

evaluation of the worst and best case performances. -:

The worst case performance is characterized by

r = H (1 P)r

s c Br

The probability of blocking PB is the solution of Eq. (4.49) where H

is replaced by H . We note that because Hc (z) is similar to H(z) the

iterative algorithm devised to solve Eq. (4.49) is still valid, except

that the initial value of the sequence Ixk} is now

-H (IPB) r
X = limit = H1(l) "1 P4 BA c NAP B - 0 PB

with Hc(I) = H'(l) + A = h + A. With respect to the delay T, let nsc
c s

be the average path length of the successful traffic, replacing H.(z) by

cH (z) in Eq. (4.48), we arrive at n = n + A; therefore, T = (n + A)t
c S 5 ,

instead of Eq. (4.50).

The "best case" performance is obtained by setting A f 0.

Again we use the set of values of a, b, c, v as derived for

the torus nets, Eq. (3.50), and the z-transform H(z) as given in Eq.

(A.31). The scaling is specified by the usual C = hC0 and Eq. (4.59)

Also E 2 is chosen to be equal to 1/64 (this value is motivated by the

ARPANET where a buffer holds up to 64 words.)

We first evaluate the behavior of an MRR as applied to a

specific network size N = 1681. Fig. 4.24 shows the plots of the lower

bound on ps, the normalized thoughput, versus p, the normalized load,

and this for a set of values of m. In that example, B0 is chosen
0I

equal to 9; with that value the number of S/F buffers at m 1
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(no clustering) is equal to one. We observe that the best performance

(lower bound) is obtained for m = 1.25 from among the set of m's

selected here. With m = 1.25 the maximum p5 improves dramatically from

Ps 0.02 with m = 1, to a minimum of 0.58. We also notice that the

performance improves as m varies from 1 to 1.25 and then it deteriorates

for m > 1.25. Moreover, the curves with a smaller m exhibit a slower

decay. This fact may be explained as follows: from Eq. (4.51), the

limiting throughput is

B+ R 1 c()NA c

but

H'(z) = AzA -H(z) zAH'(z)c

hence z = 0 => H'(0) = 0 (for A > 1, which is usually the case, see
c-,

Eq. (4.57)), and also the larger A is, the faster is the convergence of

H'(0) to zero. Furthermore, for a fixed N, A is an increasing function
c

of m.

If we limit our considerations to an operational range of p

(i.e., p is only allowed to vary from 0 up to a value slightly larger

than the one producing the maximum ps, roughly 0 < p < 1), then the

value of m which leads to the maximum p also leads to the best per-
S

formance over that entire range.

As a consequence of the above considerations, from now on we

will restrict our observations to the behavior of the maximum P

(lower or upper bound) with respect to N and for a set of values of m.

Furthermore the maximum p will be determined with or without a con-

straint on the average delay T.
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Fig. 4.25 shows such a behavior of max ps. with no constraint

on T. Figs. 4.26 - 4.29 show respectively the corresponding average

delay T, the probability of success Psthe number ef S/F buffers B

and finally the corresponding relative bound on the increase in path

length A/h.

Figs. 4.30 - 4.32 show similar plots for max Pswith a con-

straint on the maximum delay for T and P s. A few remarks emerge from

* the observation of those figures. Those remarks are, in general,

quite similar to the ones stated at the end of Section 4.3.2.2, namely

with regard to the optimal degree of clustering m for a given N,

and the feasibility and viability of hierarchical routing. Before we

U proceed, let us notice that the non-smoothness of the curves is due to

the discrete changes of B (see Eq. (4.59)). This fact is more accen-

tuated for the smaller values of N where B is small, and consequently

a change of one unit is relatively noticeable. Round-off errors, as

well as errors due to our numerical algorithms for finding PB and

especially max Ps(Fibonacci search), may also contribute to the non-

smoothness of the curves.

Hierarchical routing with an appropriate degree of clustering,

*m, guarantees a behavior of the max p5s (with respect to N) to lie

between the upper and lower bound envelopes. It is quite remarkable 1
that the lower bound envelopes (with or without a constraint on T) remain

relatively flat (around 0.6), for N beyond one hundred. Moreover the

upper bound envelopes are very close to the curves obtained in Fig.

4.21; this means that at the point (N, m) corresponding to those

envelopes, the storage required by the updates is relatively negligible.
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(This fact is also illustrated in Fig. 4.28). As a consequence, the

gap existing between the lower and upper bound envelopes is mainly

caused by the increase in the path length A.

Finally, let us notice that the performance of a non-

hierarchical routing (m =1) deteriorates very sharply for values of

N around 1O00 and that for N greater than roughly 250, hierarchical

routing clearly becomes superior.

4.5 A Queueing Model with Updates and Storage Limitation

In this section, we intend to put our previous efforts to-

gether in order to devise a model whereby both line capacities and

nodal storage used by the routing are accounted for.

The R MIM11 single node model with a finite number of buffers

B must now be modified in order to accomodate for the updates. Because of

the results in Section 4.3.1, a channel can be modeled by a HOL priority

queue (MIM1l, DID1l). This is, however, a major obstacle in an analyt-

ical solution. A more careful observation of the analysis of the HOL

system (Eq. (4.33)) shows that the effect of the updates is primarily

to reduce the line capacity available for data traffic from C to

2
(1 - p )C. The secondary effect is the added term A u/2(p~ C)Q in the

numerator of Eq. (4.33); it is this effect that we will neglect in the

sequel. Moreover, we will assume that the handling of updates utilizes

some storage (working storage) other than the S/F area.

As a result of the above considerations, our study here is

reduced to the one performed in Section 4.4.2.2 where C is to be

replaced by (1 p pC.4 u
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The results of a numerical example are shown in Fig. 4.33.

The same environment which generated Figs. 4.25 -4.32 is assumed here,

except that C is now

u
pC hpC0  .. ~

1u

The rate X uselected corresponds to our earlier compromising choice,

ieXU =LN'/4X0  where X0 0.14 1C. Also recall Eq. (4.35),
ie, u 2 u u 0'

P 64

In addition, i~is set to one.

Fig. 4.33 shows only the worst case performance of the

hierarchical routing. The results are quite comparable to those in Figs.

4.25 and 4.30. The effect of updates can be seen in the drop of the

minimum normalized throughput by roughly 0.05, except for very large

N's where the drop becomes very small. In addition, hierarchical rout-

ing becomes superior to non-hierarchical routing for N at around 180

instead of the previous 250.

By comparing Figs. 4.7, 4.25 and 4.33, we note that in this

particular example the network is more storage-bound than capacity-

bound.

Finally, the fairly flat shape of the lower bound envelope of 7

Fig. 4.33 shows that the effect of adaptive routing in terms of nodal

* storage and capacity requirements has been gradually reduced (as N grows)

so as to keep a smooth network behavior.

'The upper bound envelope obtained in Fig. 4.25 is also valid with this

* application.
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4.6 Conclusion

In this chapter we were able to demonstrate that for a class

of symetrical and distributed networks:

i. In an ideal situation of sufficient storage and line

capacity, the performance of a non-hierarchical routing is, in general,

better than the one obtained with a hierarchical routing, except at the

limit of very large nets where they become quite comparable, even for

enormous table reductions.

ii. With a more realistic situation and with reasonable

assumptions on network growth, the hierarchical routing becomes not

only a necessity for large nets, but it also preserves a remarkably

good network performance for a phenomenal range of the network size N.

The particular numerical examples studied in this chapter

showed that the transition point where hierarchical routing becomes

surely (because of lower bounds) better than a non-hierarchical one

occurs for N between 100 and 200.
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-APTER 5

CLUSTERING ISSUES AND SIMULATION OF THE MR SCHEMES w- V4

In this chapter we address the following two issues:

(i) The assignment of nodes to clusters, clusters to super-

clusters, etc., given an arbitrary network and a clustering structure,

(i.e., n, m).

(ii) The evaluation of the hierarchical routing schemes as -¢

applied to more general networks such as the ARPANET.

With respect to (i), first we define some nearness measures

among the network nodes. Then, based on those measures, we choose (and

slightly modify) the "Complete Linkage" (CL) technique as a solution for

the clustering problem.

With respect to (ii), a simulation program has been developed

in order to evaluate the performance of the -IR schemes (OBR, CER) under

some fairly general operational environment.

5.1 Clustering Issues

The clustering problem is generally defined as one of finding

natural groupings in a set of data, points, objects, etc. Numerous

clustering techniques or procedures have been documented in the litera-

ture. We mention in particular the comprehensive book of Anderberg

[ANDE 73] and other publications: [DUDA 73], [KERN 70] and the bibliog-

raphies therein.

In our context of computer networks, we need to define what

we mean by a natural grouping. In what sense are we to say that certain
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nodes are more likely to belong to the same cluster than others. This

question actually involves two separate issues: how one should measure

the similarity (nearness) between two nodes, and how one should carry

out and evaluate the partitioning of a set of nodes into clusters. In

this section, we address these issues based on some observations and .2
previous conclusions related to what we consider as a good clustering.

5.1.1 Characterization of a "Good" Clustering

Let us temporarily restrict our considerations to a 2-level -W

clustering, i.e., the partitioning of the set of nodes into disjoint

subsets (clusters). Recall that with a hierarchical routing, routing

tables contain one entry per node for nodes in the same cluster and

one entry per cluster. Also, traffic between nodes in the same cluster

must follow paths internal to that cluster. Furthermore, a given node

must send all its traffic to a given cluster on the same path up to that

cluster. The above rules lead us to distinguish two cases with regard

to the internal and external properties a cluster should exhibit.

(a) Internal Characteristics. The internal behavior of a

cluster should take advantage of the complete routing information at

each node. As a result, cluster subnets must include most of the "best"

• paths between nodes in that cluster. More importantly, since internal

traffic is confined to paths internal to the cluster, the cluster subnets

must contain the shortest paths between its nodes. This last property

was assumed to be true in the derivation of some of the earlier bounds

on the increase in the network path length (see Chapter 3).
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To take further advantage of the complete routing information,

in case of non-uniform traffic conditions (i.e., Yjk'S are not neces-

sarily equal), clusters should be composed of nodes with higher

intertraffic rates.

(b) External Characteristics. Due to the reduction of

"external" routing information, a cluster, as seen from the outside, is

equivalent to a single "super-node." An increase in the network path

length has occured (Chapter 3) because of messages entering a cluster

from a non-optimal entry point (exchange node). The single most impor-

tant variable which affects this increase is the diameter of a cluster,

or more precisely, it is the distance between the entry points of a

cluster. As a result, clusters should be chosen so as to correspond to

highly connected sets of nodes which thus lead to a small diameter and,

moreover, to a small average internal path length. In case of low-

connected nets, long chain clusters must be avoided.

Under non-uniform traffic conditions, clusters should also be

selected so as to minimize intercluster traffic which is prone to

utilize longer paths.

The above considerations can easily be extended to an m-level

hierarchical clustering. Furthermore, they provide us with guidelines

as to the choice of nearness measures and clustering techniques. Before

we proceed, let us notice that existing nets (e.g., ARPANET, TRANSPAC)

exhibit the above features to a certain extent. In particular, nodes

tend to be localized in highly populated areas, hence they constitute

natural groupings. This fact is mce likely to become predominant for

large networks, and this is a further motivation for the MR schemes.
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5.1.2 Nearness Measures

In order to cluster the set of network nodes, it is necessary

to have some numerical similarity neasurements to characterize the -

relationships among the nodes. In other words, a measure of association

must be computed for every pair of nodes (or for subsets of nodes in

case of very large nets). Any such measure must reflect the above

properties expected of a cluster, with the understanding that strongly

associated nodes are more likely to belong to the same cluster.

The above properties of a good clustering may be simply sum-

marized by stating that a cluster must preferably be composed of a

subset of nodes, as highly connected as possible, and which interchange

as much traffic as possible.

The above considerations lead to the-following intuitive near-

ness measures. Let s.. denote the similarity (nearness) between nodes

i and j. The most obvious similarity measure between two nodes is the

inverse of the hop distance between them, i.e.,

1
5 ij - (5.1)

h. is as defined in Chapter 3.

In order to make the above measure sensitive to the traffic

pattern, we modify Eq. (5.1) as

Y_.
S.. ='1(5.2)

'j h (I

iJ

Where a is a positive scaling exponent which reflects the importance of

the variable h .. as compared to yi. in the evaluation of s.. a =0

means that s. is only sensitive to the traffic rates.
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The above external characteristic of a cluster motivates us to

seek the grouping of nodes which, seen from the outside (i.e., from other-!

nodes), exhibit some sort of unity. For this purpose, we define a

matching variable between arbitrary pairs of nodes i,j as seen from ank

arbitrary node k: m ij . The function of this variable is to, somehow,

reflect to what extent the routing table at node k indicates the same

route (i.e., same next-node) for traffic destined to i or j. mik is,

therefore, closely related to the routing scheme utilized and can be

determined either in a "static" way or through measurements.

The static evaluation of mkj. relies on the computation of the . .-

paths which result from a given deterministic routing policy (e.g.,4 1

shortest path routing, flow deviation method [GERL 73A], etc.).

If we consider a shortest path routing, then m~. is set equal to one
1)1

if node k indicates the same next node on the paths for i and j; and it w

is set equal to zero otherwise. Next, we define the nearness between

knodes i and j as the average of m.. over all nodes k,

smk(5.3) -
sij = N-2~ mi.(53

k#i
k j

k
As mentioned above, mij can be determined through measurements

such as the ones performed on the kRPANET [KLEI 74). Such measurments

(of interest to our study and others) have been carried out by the

Network Measurement Center, NMC, at UCLA. They consist of collecting

regular snapshots of the routing tables over a certain period of time.

kA matching value is then defined for each snapshot, say y, as mij(y)

which is then equal to one if node k's RT shows the same next node for
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the routes to i and j (and zero otherwise). If Y is the total number

k.
of snapshots, then m i. is defined as

k ernm = . m! (y) (5.4)
y= 1

Finally, s i is as defined in Eq. (5.3). These last two measures will

be applied below to the ARPANMT

Further measures may be defined as a combination of Eqs. (5.2)

and (5.3), or else as based on other network characteristics. In this 2
study we restrict our considerations to the above intuitive and simple

measures in order to achieve the network clustering.

5.1.3 Clustering Techniques

The nearness measures discussed above may be used as input to

some clustering techniques which then realize the grouping of nodes into

clusters. From among the existing clustering techniques [ANDE 731 -?w

Complete Linkage (CL) method seems to be the most appropriate to our

study. This method belongs to the family of hierarchical clustering

techniques. It operates on a similarity matrix, s = [s..j], to construct

a tree depicting specified relationships among the nodes. More pre-

cisely, with CL, each node starts as a cluster. Then, at each step the

most similar pair of clusters, say p and q, are merged into a new

cluster, called t. The similarity between the new cluster t and some

other cluster r is determined as follows:

s tr =min Ispr' sqrl (5.5)
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As such, str is the similarity between the two most dissimilar pairs in

clusters t and r. (Alternatively, if s.. is a distance-like measure

(e.g., sij = h.j ) then, str = max

The main property of this method is that all nodes in the same

clusters are linked to each other at some maximum distance or minimum

similarity. As a result, this method tries to identify "maximally

connected subgraphs" which is precisely our main objective.

This last property can also be used as a stopping criterion by

defining a threshold Th, beyond (or below) which no merging is allowed

(i.e., if s.. < Th * i,j then STOP).ij

Another stopping criterion may consist of specifying the total

number of clusters (n2 ).

A shortcoming of CL is that it may lead to various non-optimal

cluster sizes (see Proposition 2.1) whi.ch may considerably reduce the

gains in table length, X, obtained from optimal size clusters. There-

fore some size limitation must be introduced. This can be realized by

not allowing the merger of two clusters whose combined size is greater

than the prespecified limit. This limit may be chosen as the optimal "

integer size n1 (see Proposition 2.6). Furthermore, CL can be extended,

as shown below, to accomodate a hierarchical clustering with more than

2 levels, provided we are given a vector of maximum degrees,

n= (n, ...,nM).

Similar to the above, let p,q be the most similar pair of

clusters, which are such that p is an ith level cluster and q, a jth

stlevel cluster. Also let ni(p) (and n.(q)) be the number of i-l level

stcluster (j-1s ) in p (q). Three cases to consider are,
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(a) i j: Merge p and q into t;

If n.(p) + n.(q) < ni , then t is an ith level cluster of

degree n.(t) = n.(p) + n.(q).

Else, t is an i+lst level cluster of degree ni+ l (t) = 2.

(b) i < j: The i level cluster p is augmented with j-i

thlevels, each of degree one, to become a j level cluster;

then Step (a) is performed.

(c) j < i: The same as above for q.

Initially, each node, say p, is considered to be a 1st level cluster of

thdegree n (p) = 1 (i.e., it contains one 0 level cluster). Furthermore,
st

Snm, the maximum number of m-l level clusters, is usually set to be

st
large enough that the merging of two m-l level clusters always results

in a m-lst level cluster (see Step (a)). Either that, or the merging

of the pair p,q is not allowed.

The above clustering technique does not guarantee that cluster

subnets are connected. This is, however, to be expected of such a

method (see below) To accomodate for this deficiency, a connectivity

check may be performed before allowing the merger of two clusters.

This check may be performed by using a distance-like measure d.. which1J•" .1
' ._

initially is set equal to h.. and after a merging of clusters p,q into

t, then

dtr prin d r dqr:

As a result, a merging of p and q is allowed only if d = 1.
Pq

UI
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Application to the ARPANET

H The above modified complete linkage method (without a connec-

tivity check) has been implemented and applied to the ARPANET. Fig. 5.1

shows a map of a 52 (duplex) channel, 46 node ARPANET as it was in

operation on June 25, 1974. CL used as input the nearness measures of

Eq. (5.3) as computed, first, from measurements performed at UCLA and

second, from a shortest (hop) path routing.

(i) Clustering based on measurements. Fig. 5.2 illustrates

the outcome of CL (as obtained using the measured nearness) in terms of

the relative table length i/N, and the threshold Th. Th is defined as

the minimum nearness between any pair of nodes which belong to a common

cluster at any level. The curves are shown for m = 2, m = 3, and for

a variable m which achieves the lower envelope for Z/N. For m > 3, the

maximum degrees were assumed to be: n I = n2 = ... 3= n =,as moti-
- 2 ... M-1

vated by Proposition 2.5; n was left unbounded.

The curve corresponding to m = 2 was obtained with no con-

straints on (nl, n2). It reflects the fact that with CL, initially,

all nodes are considered to be clusters; hence Th = 1, 1 + 1,
'N N

and at the last step of CL all nodes are in the same cluster. Thus,

= 1 + I z I with Th = 0.11. The minimum (with m = 2) of k is equalN N

to 17 (recall N = 46) and corresponds to the clustering structure

shown in Fig. 5.3. This structure is composed of 11 clusters, with

the largest cluster containing 6 nodes. The suboptimum £ = 17 is fairly

close to the theoretic minimum £ = 2  =14. This shows the fairly

good behavior of CL in this particular example. Let us also note that

at that minimum point, the resulting cluster subnets are connected.
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With a variable m, the global suboptimal point is reached for

= 14, whereas the theoretic global minimum is X, = 11.

(ii) Clustering based on the shortest path matching. With this

measure, CL leads to the following suboptimal points:

m =2 => = 15

m variable => Z = 13

They represent a slight improvement over the previous ones. For the.1

sake of comparison with the earlier outcome, we show in Fig. 5.4, the I "

clustering structure which yields Z = 17; this structure is also composed

of 11 clusters, with the largest containing 6 nodes. The clustering

structures of Fig. 5.3 and 5.4 do not exhibit strong similarities. This -

can be explained by the quite asymetrical traffic pattern of the ARPANET

[KLEI 74] which led to the measured nearness.

The evaluation of the MHR schemes based on such clustering 0

outcomes is the object of the next section.

5.2 Simulation of the MHR Schemes

5.2.1 The Simulator

A PL1 simulation program has been developed to help investi-

gate the effects of hierarchical adaptive routing on the performance of

arbitrary networks. The computer storage and computational requirements

for simulating moderate size (a few hundred nodes) networks placed a

1A thorough documentation of this program is available at UCLA,

Network Measurement Center.
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restraint upon the amount of detail which could be implemented in the

simulator. We list below the important features implemented in the

simulator.

1. Messages are assumed to be single packet messages (hence,

there will be no reassembly problems) whose lengths may be constant or

drawn from a truncated exponential distribution.

2. All channels are assumed to be duplex channels and error

free.

3. Each node (IMP) may be composed of a finite or infinite

number of S/F buffers. In case of a finite storage, the sharing with

maximum queue length (SMXQ) scheme is applied (see Appendix B).

4. The routing updates are periodic and occur every T seconds.

The updates are not synchronized among nodes. On the contrary, initial

update times are selected randomly on a node pair basis (or simply on a

node basis).

The update rule is performed as specified in Chapter 3 (for

NCR and MR schemes) except that in Algorithm 3.9, the channel length
41

ats is now a random variable. When an update occurs, the channel

length ats is estimated, as is presently done in the ARPANET. If we let

kbe the line capacity index and k 2 the queue index (k 1 =4, k 2 =1

for the ARPANET) , then

a =sMk I+ k2 t

where q~ is the current queue length (in packets) for line (t, s).

A further modification is introduced to Algorithm 3.9 in order

to avoid chain loops [NAYL 75]. A change in routing at node t is
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allowed only if entry C.(i) at s is not pointing to t. Let NN(s, C (i))

denote the next node field at entry C (i) of node s RT (see Fig. 3.1),

then the first step of Algorithm 3.9 is modified as

IF Ht, C.(i)) > ats + HF(s, C.(i)) AND NN(s, C.(i)) # t.

S. Acknowledgements (ACK) are assumed to be instantaneous. A

message forwarded from one node to another can be rejected if there is

no space available (recall that S/F buffers are managed by the SMXQ

scheme). This situation triggeis a negative ACK (a departure from the

ARPANET protocol) upon reception (instantaneous) of that ACK, the

sending node reschedules the retransmission of that message. The

message is deleted when a positive ACK is received.

6. With respect to the flow control, messages are not accepted

in the net for either of the following reasons:

(i) There is no buffer space at the originating node.

(ii) The total number of messages in the network is equal

to a given critical number, NC.

The rejected messages are considered to be lost.

This terminates the description of the main features of the

simulator; we now proceed with some applications.

5.2.2 Simulation of the ARPANET

Our previous clustering structures of the ARPANET (see Figs.

3.1, 3.3 and 3.4) are now used as input to the simulator in order to

compare the performance of the NCR and the MHR schemes (CER). More

specifically, the operating conditions are as follows:

210

1-•



U.----

Topology: 46 node ARPANET, Fig. 3.1. It is composed of 52 duplex

channels of capacity 50 kbit/sec per channel, except for lines (16, 15)

and (45, 15) which are of capacity 230.4 kbit/sec. The propagation

delay on the lines is set to zero.

HiR: The net is operated with a non-clustered (NCR) adaptive routing

and with a 2-level closest entry routing (CER) scheme. The underlying

clustering structures of CER are as shown in Figs. 5.3 and 5.4. In what

followi, we will refer to the representation of Fig. 5.3 as AMC, which -.

stands for ARPANET Measured Clustering, and ASC, ARPANET Static Cluster-

ing, for the representation in Fig. 5.4. The non-clustered version will

be referred to as ANC (N for "non"). "

Traffic Characteristics: We assume a uniform traffic matrix, i.e.,

Yij= y i, j; therefore, the network throughput is equal to U

N(N - l)y = 2070 y. The message length is assumed to be fixed and

equal to 1 kbit.

Update Information: kI = 4, k2 = 1. Update interval, T = 0.64 sec. 4

The initial update times are chosen randomly on a node-pair basis. The

length of an update message is set equal to 1 kbit with or without

clustering.

Node Operating Condition: We assume an infinite nodal storage, and a

nodal processing time equal to zero. 7

The results of the simulation are shown in Fig. 5.5.

Let us first notice that the maximum throughput is achieved for

Ymax = 0.274 msg/sec. This value can be computed by considering the
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cut set (line cut set) with minimal capacity and maximum through

*traffic. Channels (24, 13), (12, 47) and (48, 37) partition the net

into two equal subsets of nodes (23 nodes each) and thus they constitute

such a cut set. The traffic in one direction is equal to

(23)2 y + 3 u
U I4u j

where 1/p = 1/pu 1 kbit and A = l/T = 1.562. The capacity of this
u u

cut (in one direction) is equal to 150 kbits, and y = .274 msg/sec

achieves such a maximum traffic. '

Fig. 5.5 shows that NCR leads to a better performance, mainly

for y > .2 msg/sec. This is to be expected, since this application did

not account for the savings obtained from the MHR schemes. Such savings

are, however, rel-tively small due to the small size of the ARPANET

(46 nodes).

Furthermore, the static clustering, ASC, leads to a better

performance than the measured clustering, AMC. This is mainly due to

the uniform traffic assumption.

The difference in performance between the NCR and the CER may

be further explained as due to the low connectivity of the net, which

leads to chain cluster subnets. The average distance between entry

points of a cluster is approximately 3 for an average network path

length of approximately 6.

The above results still intuitively indicate that for an

ARPANET with more than 64 nodes (at which point the RT uses more than

one buffer), one may expect that an NI-R with a table length ZZ64 will

start to show some improvement over the NCR scheme.
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5.2.3 Simulation of a 64-Node Torus

We consider in this section a 64-node torus upon which we

impose two clustering structures (see Fig. 5.6). In this particular -w

example, we account for the savings obtained from the reduction in table

length; furthermore, we use the overall best routing (OBR) scheme to

operate the network. More specifically, the operational environment for

the simulation is as follows:

Topology: We assume a 64-node torus, composed of 128 duplex channels of -S

20 kbit/sec each. The propagation delay on the lines is chosen as equal

to zero.

MHR: The network is operated with an NCR and an OBR scheme. The OBR

scheme is utilized with two clustering structures: a 2-level clustering

composed of 16 clusters containing 4 nodes each (i.e., n2 = 16, n1 = 4),

and a 3-level clustering with degree vector n1 = n2 = n3 = 4. These..

structures are shown in Fig. 5.6; the first will be denoted by 16 x 4C

and the second by 4 x 4 x 4C.

Traffic Characteristics: We assume a uniform traffic pattern. The

offered load r is then equal to r = N(N - 1)y = 4032y. The message

length is governed by a truncated exponential distribution. The mean

length is set equal to 500 bits and the truncation point is at 1000 bits.KUpdate Information: Similar to the above, we choose k1 = 4, k2 = 1,

T = .64 sec. The size of and update message 1/pu, is fixed and pro-

portional to the table length; moreover, we assume each entry to be

16 bit long. Therefore,
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NC => P,= 64 => 11wu = 1024 bits

16 x4C => k =20 =-> I/Vw = 320 bits --.

4 x 4 x 4C => X= 12 => 11wj 1 92 bits

Node Operating Condition: The nodal processing is set to zero. Each

node is assumed to contain 16 S/F buffers. These buffers are shared

between the 4 outgoing channels under the SMXQ sharing scheme, where 12

-~ is the maximum length of any queue.

* Results: Fig. 5.7 shows the results of the simulation under the above

* operating conditions. We observe that OBR with the "116 x 4" 2-level

clustering achieves a better performance than NCR and OBR with- .

4 x 4 x 4C. The difference with NCR is not too considerable; this is

* due to the small size of our network (64 nodes) which thus does not

yield to great savings in table reduction. However, this indicates

that clustering starts to pay off, even for such a small network size.

* - The OBR scheme with the 4 x 4 x 4C clustering structure achieves the

worst performance; furthermore, is saturates faster than the two other

cases. This is due to the fact that such a degree of clustering (high

for this small net) leads to a significant increase in path length,

hence in internal traffic.

Let us also note that for r =1700, the network gets into a

*deadlock situation. This, and the bending of the curves at r' 1600,

is due to the buffer limitation. A better flow control scheme is

required to operate the net; recall that the only control introduced

here is in terms of the total number of messages which can be in the
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network at any given time. That number was selected to be equal to

819 (approximately 4/5 of the total number of buffers in the network).

5.3 Conclusion

In this chapter we mainly laid the framework and introduced

a methodology in defining nearness measures between pairs of nodes.

Those measures were utilized with a modified complete linkage method

to achieve the clustering of the ARPANET. Applications to larger net-

works should be investigated, along with other clustering techniques.

The simulation of a 64-node torus confirmed our earlier 1

theoretic results which indicated that the M-R schemes with an appro-

priate clustering structure eventually (as the network grows in size)

outperform the NCR scheme. The transition point was seen here to be

even smaller, in the neighborhood of 64.
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CHAPTER 6

TOPOLOGY DESIGN CONSIDERATIONS FOR LARGE

COMPUTER COMMUNICATION NETNORKS

6.1 Introduction

Up to now, we were given a large distributed computer communi-

cation network, and the problem was to devise an appropriate adaptive

routing scheme which would operate efficiently with a fairly small

amount of routing information. The study of the 141R routing schemes

showed that, indeed, they represent a class of very satisfactory

solutions to the routing problem in large networks. Now, going one

step back, the problem becomes that of designing the topology of a

minimum cost communication network which connects a large set of nodes

and which satisfies a set of given requirements (traffic, delay,

ISO
reliability, etc.). Furthermore, it is desirable that the resulting

network be fairly easy to operate (routing, flow control, adaptation

to failures, etc).

The bursty nature of computer traffic, as well as the con-

tinuously decreasing cost of computer hardware [ROBE 74], very much

favor packet switching, as currently used in the ARPANET [ROBE 70],

[HEAR 70], [KLEI 70], [FRAN 70], [CARR 70], [MCQU 74], as the tech-

nology for us to consider. Several different formulations of the

topology design problem can be found in the literature. Generally,

they correspond to heuristic methods with different choices of

performance measures, design variables and constraints. Along thoseL formulations, several solutions have been proposed [GERL 73A]
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[FRAN 72 ]and applied to ARPA-like network designs. Howevei, for

networks with more than a few hundred nodes, present procedures fail

because of the large amount of computer time and storage needed to

perform the optimization. Design procedures, based on hierarchical

clustering, have been proposed [FRAN 73], [GERL 73B], [coVI 74] to

substantially reduce the computational cost and the storage require-

ment involved in the optimization step. Generally speaking, in a

two-level hierarchical design, the nodes will be grouped into clusters

and "gates" (special cluster-exchange nodes) selected from each -.

cluster. Cluster subnets will be designed separately, and then a

supernet of gates will be designed to connect the clusters together.

0 The assumption is that nodes in the same cluster are most likely to

be very few hops apart in either a non-hierarchical or hierarchical

* design. The approach described briefly above could be easily extended

to more than two levels in the hierarchy.

In this chapter, after stating the design problem in a more

precise form, a class of hierarchical design procedures will be

presented. The focus will be upon the determination of a certain.

optimum hierarchical clustering structure of the set of the nodes, to

be used in the design phase. In other words, we will be concerned

with the choice of the cluster sizes at any level and the number of -

levels which will minimize a certain objective function (e.g. computa-

tional cost). Some related questions, such as the decomposition of the

global performance variables and requirements, will also be addressed.

Frank and others [FRAN 73] showed from a feasibility study of

a 1000 node network that, indeed, hierarchical structures are desirable
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for the design of large networks. They also posed the same questions

concerning the clustering structure but failed to answer them for the

general case (m levels).

6.2 The Topology Design Problem

The same network model as in Paragraph 6.1 is used in this

section.

6.2.1 Delay Analysis

Recall Eq. (4.5)

1 NA _i__

4Tr PC X

More elaborate expressions for T [FULT 72], [KLEI 74] may be obtained

to include overhead traffic, nodal processing delay, etc. For the

purpose of illustrating the complexity of the design problem, we will

limit our consideration to the simple expression above. In the design -

problem, T will appear either as the objective function to be minimized

or as a variable constrained to be less than or equal to a given value,

T
max

Let f!k,9) be the average flow (bits/sec) produced in channel i l

by messages traveling from source k to destination k (flow of commodity

(k, Z)), and let f. be the total average flow in channel i, given by:

N N

k=l =l
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Consequently f. = -

and T= C . (6.1)

Let f = (fI f 2 , "'' fNA) be the flow vector, and let

= (cis C 2 s ...,I CNA) be the capacity vector. For the above equation

to be feasible, the vectors f and C must satisfy ."

f < C i.e., f. < C. (6.2)~ 1- 1 .

The above relation will serve as a constraint in the design problem.

6.2.2 The Communication Cost

To the ith link, we have assigned a channel capacity C. C.

is a discrete variable. However, for the development of efficient

analytical techniques, it is often convenient to approximate C. with a

continuous variable [KLEI 64], [GERL 73A] during all (or part) of the

optimization phase, after which these continuous values are discretized.

Typical capacity options and their cost are listed in [GERL 74]. The

cost of channel i, denoted di(Ci), is a functioi of the capacity and

the length of the channel . In general, the cost shows economies of 0

scale with respect to capacity, and it increases linearly with the

length of the channel.

More elaborate charging structures such as ATT's new DDS service

have also been devised.
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6.2.3 Traffic Requirement

Average "traffic requirements" between nodes can be represented

by a matrix R

R A =Yjk ] .

Recall that yjk (messages/sec) is the average transmission rate from -.

source j to destination k. In general, R is given as an input param-

eter to the problem. In some cases, R is given as

R pR

where R is a known traffic pattern and p is a variable scaling factor,

usually referred to as the traffic level.

As a result of the traffic requirements, the following multi-

commodity flow constraint [HU 69] must be satisfied.
Ykk

-- if i=k

N N
-ff 2 = k --- if i = k (6.3)

j=l ~ j=l
0 otherwise

6.2.4 Reliability

Links and nodes in a real network can fail with non-zero prob-

*ability, thus interrupting some communication paths. It is important

to evaluate the overall network reliability in the presence of such

failures. Several reliability measures are available: the probability

of the network being disconnected, the fraction of communicating node

pairs, the connectivity of the network, etc. [FRAN 72]. However, no

simple satisfactory measure exists yet. In the design problem, for the
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sake of simplicity, connectivity is usually used as a reliability

measure.

This concludes our model description, and now we are ready to

state the design problem more formally and then to discuss its com-

plexity.

6.2.5 Topology Design Problem

The topological design problem can be defined as follows:

-1

Given: Node locations

Requirement matrix R

Cost-capacity functions di(Ci)

Minimize: D(A, C) = . d.(C.)

ieA

Over: A, C, f (6.4) "

where A is the set of arcs which corresponds to a specific topology,

C is a vector of capacities and f is a multicommodity flow, such that

(a) f satisfies the requirement matrix R (see Eq. (6.3))

.(b) f < C (see Eq. (6.2))
1. •

1 _C f < max (see Eq. (6.1))
(c icA i i

(d) Reliability constraint: e.g., K-connectivity.
S

Notice that the above cost function associates the entire network cost

with the channels themselves [KLEI 64], [GERL 73A]. This does not

2
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ent ~a loss of generality with respect to the nodal costs which

.. he grouped with the channel costs.

In general, there are 2NN)2 possible topologies. Consid-

ering all possible designs by a computer is out of the question.

Furthermore, capacities are available in discrete sizes. This means --

an enormous integer optimization problem must be solved.

The non-linearity of the time-delay functions and, in some

cases, of the reliability measure add another dimension of complexity O

to the problem.

There exists no efficient technique for the exact solution of......

the topological design problem. Several heuristic procedures have been

proposed and implemented. Among them, we mention the Branch X-change

method [FRAN 72] and the Concave Branch Elimination method [GERL 73B].

They typically start with an initial topology over which they perform

some alterations in the course of the optimization. Built into those

procedures and inherent in the multicommodity nature of the flow, is

the determination of the shortest path between any pair of nodes in the

network. This operation requires approximately up to the order of N 3

2 3operations (N to N N =number of nodes) and may be performed

*many times in the course of the optimization. The overall computational 4

complexity corresponding to those heuristics is estimated to be on the

order of N3 to N6 [FRAN 73], [FRAN 72].

For networks with more than a few hundred nodes, present

procedures fail because of the large amount of computer time and

storage needed to perform the suboptimization. Furthermore, for such
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networks, incremental changes in the number of nodes ought to be

considered on a local basis rather than on a global basis as it is

performed now. In other words, addition or deletion of a node should B

not affect the topology of the entire network to a large degree. As a

result, new approaches are needed to deal with the design of large

networks.

6.3 The m-level Hierarchical Topology (MHT) Design Procedure

Various tools are available in the field of operations research

to solve certain classes of large scale mathematical programming

problems. Among those techniques are the Dantzig-Wolfe, Bender's,
* SD

Lagrangian decomposition methods and the column generation method

[LASD 70], [HIMM 72], [GEOF 74], [GRAV 72]. Due to the complexity of

our design problem, the direct application of these techniques does
S

not seem too promising and even less practical. Consequently, a good

heuristic method, based on intuition and on the natural properties of

the problem, is desirable. However, exact design procedures should be S
developed in order to serve as comparison for the evaluation of any

heuristic design technique. Hierarchical design procedures are good

candidates to alleviate the tremendous complexity of the problem and
4- i

yet produce some good topological design. Such a procedure, the

m-level hierarchical 'opology (HIT) design method, will be presented

and studied in the rest of the chapter.

The idea behind the HIT is to impose a decomposable structure .
on the design problem which K11 result in a set of smaller sub-

problems. In other words, we will introduce independencies among
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subsets of design variables. The imposed independencies will substan-

tially reduce the set of feasible solutions and also, as a direct

consequence, the computational cost. In doing so, there is the risk

4 of eliminating the optimal solution. Therefore, it is very important

to seek "natural" decompositions.

#Afhe four major steps in an MT are:

a. r-level hierarchical clustering (MI-IC of the set of nodes.

b. Decomposition of the objective functions and the design

constraints.

c. Decomposition of the optimization problem into a set of

smaller subproblemns. Solve for the set of subproblems

with possible iterations.

d. Exact performance evaluation of the resulting network.

and comparison with optimum performance.

6.3.1 Step a: MHC of the Set of Nodes

The decomposition mentioned above will be realized through an

m level hierarchical clustering of the set of nodes, based on some

appropriate nearness measure. As defined in Chapter 2 (see Fig 2.

and Paragraph 2.3.1 for definitions and notation), the MI-C consists of

grouping the network nodes (0 t level clusters) into 1 t level clusters

which in turn are grouped into 2 ndlevel clusters. This operation

continues in a bottom up fashion until the grouping of the m-2nd level

clusters into m-t level clusters whose union constitute the mh level

cluster. The m ivel cluster is the highest level cluster, and as

such, it includes all the nodes of the network. This partitioning,

easily describable by a tree structure as in Fig. 2.4, could also
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proceed in a top down manner.

The above structural similarities, with the MHC devised for

the adaptive routing in large networks, do not quite carry over to the

choice of the nearness measures and probably not to the clustering

techniques, both of which will greatly affect the outcome of the MHT.

The nearness measures must take into account the cost of the different

components of a communication network (switching nodes, channels,

etc.), the traffic and reliability requirements, the delay of a message

in the net, etc. Some examples of simple nearness measures are:

(i) S = . nearness between nodes i and j
ij d.

Y..
(ii) s.. = 3Ij d .

where d.. is the geographical distance between nodes i and j;

Yij is the rate of traffic from i to j, and the exponent c is

between zero and one. e

Here also, the direct application of the clustering techniques

[ANDE 73], [DUDA 73) may lead to various non-optimal cluster sizes

which will, in general, considerably reduce the computational gains g

[KERN 70] obtained from optimal size clusters. One way to decide upon

an MHC structure is to choose the one which will minimize the computa-

tional cost incurred in the MT. This problem will be posed and solved

later in this chapter.

Along with the MIC, we must select the gates (exchange nodes)

for all clusters at all levels (Fig. 6.1). The function of the gates
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from a given cluster is to handle the traffic exchanged between the set

of nodes in that cluster and those outside. More specifically, the

assumption underlying the flow of messages is as follows.

Flow Assumption 6.1

a. Traffic between nodes in the same cluster, at any level,

will only take paths which are internal to that cluster, i.e., paths

contained in the corresponding local subnetwork.

b. Traffic between nodes in different kth level clusters

(k = 1, ..., m - 1), but which belong to the same k+lst level cluster,

will first be channeled to a k+lst level gate of the originating clus-

ter over its local subnetwork; then, it will take the k+lst layer

stsubnetwork of gates to reach a k+l level gate of the destination

cluster, at which point it will be dispatched over the local subnetwork

to finally reach the destination node. (This is the standard procedure 'o

in hierarchical networks.)

Fig. 6.1 illustrates some of the preceding and forthcoming

definitions for a 3-level hierarchical design. g

A local subnetwork of a kth level cluster, say C, is defined

recursively as the collection of those local subnetworks associated

with each k-lst level cluster {Ckl(i)}i which belongs to Ck and which

thare connected together through a subnetwork of k level gates called

a kth layer subnetwork. Consequently, such a local subnetwork is

composed of k hierarchical layers, each of which is composed of a W

certain number of layer subnetworks. As a reminder of the k layers,

the subnetwork will also occasionally be called a k-level subnet or a

k-level local subnet.
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3rd LEVEL CLUSTER

2nd LEVEL CLUSTER
go 1st LEVEL CLUSTER

*0. 0 0 LEVEL CLUSTER
* * (NODE)

0 3rd LEVEL GATE
2dLEVEL GATE

1s' LEVEL GATE

L3rd LAYER SUBNET

2 nd LAYER SUBNET
1st LAYER SUBNET

* Figure 6.1. A 3-Level Hierarchical Network.
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The selection of gates at all levels is governed by the fol-

lowing assumption.

Gate Assumption 6.2

Given an integer vector = (1, 2, ... , 8 ) where A= 1I

and a selection rule, then, starting at k = 1, select Bk+lk+ISt level

gates among the set of kth level gates of each kt h level cluster

( Repeat this step sequentially until k = m - 1. A
ist -4 -

network node is considered to be a 1 level gate.

Let ek be a kth level gate, and E k(im, il , ,ik+l)

ek ek C 'm-l . ik)I be the set of all kt  level gates in

the corresponding cluster. Also, let gk(im, iml, ... , ik+l) be the

size of the abovementioned set of gates. As a consequence of the gate

assumption, the following relation exists between the size and the

degree vectors.

gk(im, 'm-1 , . Ik+1) = 8k nk(im. ik+1  (6.5)

Notice that for k = 1, the set of 1St level gates of a Is t level

cluster is simply the set of all the network nodes contained in that

cluster, hence

gl(im ia ., i2  nl m 1 m_ .- . i2 )

which explains the convention, 31= 1. For the above selection scheme

to be feasible, the number of k th level gates of a kth level cluster,

Ck must be no less than 8k+l' i.e.,
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gk(im, im-I .. , i ) > S k+1  k = 1, ... , - 1

The above relation, combined with Eq. (6.5), will henceforth introduce

a constraint, to be referred to as "gate constraint," over the choice

of the degree vector n characterizing the 4-C structure.

Gate Constraint

nk(im ir-i' .. i ) k k 1, 2,..., m- I

k i ,-1 
ki )(i m ira I , . k+l (6.6)

The choice of the vector S will be mainly related to the

reliability constraint, Eq. (6.4). If a K-connectivity is to be im- W m

posed on the topology of the network, then the vector a must be such

that 5.> K for i = 2, 3, ... , m. This is obvious since the set of the

6i ith level gates of an i-Ist level cluser represents a cut set

[HARA 72] for the other nodes in that cluster.

Let a centralized hierarchical network be defined as a hier-

archical network whose topology is such that all k th level clusters f

(for all k's) communicate with the outside through only one k+lst level

gate. Consequently, the corresponding vector 0 is

4 . S

S= (1, 1,.....1) i.e., S. = 1 ¥ i 1, ... , m

This structure is commonly found in the hierarchical star networks and

also in the organization of many business or government agencies. S

232

[I -



6.3.2 Decomposition Step

The main computational gains introduced by the MIT come from

the separate design of the different components of the networks, i.e.,

the design of the layer subnets at all levels. To perform this opera-

tion, it is necessary to define performance measures for those subnets

as well as the corresponding constraints to be imposed on their design.

Then, the global objective function and constraints must be expressed

in terms of those associated with the layer subnets. As an example,

th
assuming that messages travelling over k layer subnets will incur

the same delay, Tk, then the problem is to express the global average

delay, T, in terms of Tk's, i.e., an expression of the form

4M
m

T = . aiTi
i= a

must be derived. A particular case is solved in Section 6.7 when

an optimal MHC structure is considered. Similarly, given a certain

dollar budget, the question may arise as to how much one should allo-

cate for the design of each of the layer subnets at any level. Section

6.7 will address some of the above questions.

6.3.3 Design and Evaluation Steps

These two steps will not be studied in depth in this report.

However, the economies of hierarchical networks, as well as their 6

operational flexibility (routing, flow control, addition of nodes),

will be pointed out in Chapter 7. Since the MHT results in the design

of a set of much smaller subproblems, then present heuristic design
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methods [GERL 73A], [FRAN 72] become feasible and quite attractive to

perform the required job.

In order to evaluate the computational complexity in the-

design phase of the MHT, we will make the following assumption:

Computational Cost Assumption 6.3

a. The computational cost incurred in the design of a k th-

thaklayer subnet connecting a set of n k level gates is equal to n

(k =1, 2,..,i)

b. The total computational cost involved in the design is-

equal to the sum of the costs induced in the design of all the layer

subnets.

Recall that the polynomial form of the computational cost is

the one normally used [FRAN~ 72] to characterize the computational

complexity of most of the present design algorithms. The fact that

different exponents, cyk s, could be selected, depending on the level 1

of the hierarchy, is provided to allow the modelling of the design of

hierarchical networks where different technologies or design algorithms

or both are considered at each level or group of levels.

In summary, the main elements involved in the computational

complexity of the MHT have been exposed under a set of assumptions

which, hopefully, retain the essential character of the class of hier- .

archical design procedures.

6.4 Optimal Clustering Structure, General Case

Given the number of levels, m, the objective here is to deter-

mine the optimal clustering structure, i.e., the degree vector n
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which will result in a minimum computational cost. A similar problem

has been solved in Chapter 2 but with a different objective function,

i.e., the length of the routing table (see Eq. 2.3)).

6.4.1 Expression of the Computational Cost and Problem Statement

The model aimed at capturing the computational complexity of

the MHT has been introduced and discussed in the previous paragraph.

Let G(m, n, a, 8) represent the computational cost incurred in j
the design step of the MHT. It is a function of the underlying clus-

tering structure, the number of gates and the computational cost of

the design of the different layer subnets which are respectively char-

acterized by (m, n), a and a. Some of these variables will be dropped

from the above notation when no confusion is possible. Notation such as

G, G(m, n), etc., will be encountered in the rest of the chapter.

Similarly, Gk(m, n, a, 8) will denote the cost incurred in the design

of all k layer subnets. We are now ready to evaluate G; we start

with the simple case of a 3-level clustering.

6.4.1.1 Expression of G for a 3-Level Hierarchy ]
Fig. 6.1 shows a 3-level hierarchical clustering of a set of

nodes. From Assumptions 6.2 and 6.3 and Eq. (6.5), the computational

cost incurred in the design of all the 1st layer subnets is

n3 n2 (i 3 ) aI  V
GI(3, n, a, B) =  8nl~ 5  2]--

31 12=1
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where the summations extend over all 1 level clusters of the network.

(Recall that a, 1). Similarly

n3 a2

d G3(3, n, a, 8) = [ n3] )

Consequently, the global computational cost is

n3 n2(i3) a1

G(3, n, a, 1) = 1 [lnl(i3, i2))13--1 i2=1 . .
3 2

n2  a3
+ [82n2 (i3)1 + [+3n3 1  (6.7)

i3=1

6.4.1.2 Expression of G for an m-Level Hierarchy

From Assumption 6.3 and Eq. (6.5), the computational cost of

the design of a kth layer subnet is equal to

[g"( .'ml' = [knk(im'im-l' . kel)

th
The above expression, summed over all the k level clusters, repre-

sents the computational cost incurred in the design of all the kth

layer subnets, i.e.,

nm nm-l(iM) nk+l (im Ml "'' k+2)
Gk (m , n , , = lm- "1 [akn k (im , 'rn-i ,  .. . i k~ 4QJ

m Ml1 k+l

Gm(m, n,a, 8) - (8n) m (6.8)
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Notice that for k = m, by convention, we will set the multiple summation

to one.

From Assumption 6.3, the global computational cost is:

m
G(m, n, a, 8) = Gk(m, n, a, 8) (6.9)

k=l

6.4.1.3 Problem Statement

given: N, a, 8

minimize: G(m, n, a, 8) [see Eq. (6.9)]

over: m and n

subject to: size constraint [see Eq. (2.1)] (6.10)

gate constraint [see Eq. (6.6)]

m positive integer variable

n vector of positive integer variables

The precise problem expressed above is a non-linear integer programing

problem which has not been solved in its entirety. In order to make

progress toward a solution, we choose to relax some of the constraints,

namely, the integer and gate constraints. It is also necessary to tem-

porarily freeze the variable m. The relaxation of the gate constraint

is not of too much consequence, since it will be shown that for prac- S

tical values of 8, a, N, m, the optimal solution will satisfy that

constraint. The added relaxation of the integer constraint will lead

to a nice analytic solution when m is given; (for some particular

properties of the vectors, a and a, an analytical solution is found for

the optimal m.) The resulting real-valued solution is of considerable

importance for at least two reasons: (1) The study of its behavior,
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with respect to the variables m, at , will provide us with insight as

to how much computational gains can be obtained through the application

of the ?&IT design procedure and into the choice of the appropriateW

clustering structure. (2) A sub-optimal integer solution could be

directly obtained from the real-valued solution (thereby providing an

upper bound on the cost). As a consequence of the relaxation of the

integer constraint, one question arises as to what is the meaning of a

discrete swimation where the upper variable is not an integer. Con-

sider as an example

32

3

The summation is only meaningful in two instances:

(1) when n 3is integer

(2) when n 2(i 3  n n2  ~ 3

Then the summation becomes:

n3  2

i =1n

3 =1

The solution of the optimization problem will show that clusters at the

same level must be of equal degree (size); hence, the 2n condition will

0 - always be satisfied a posteriori.

The optimization problem to be solved is reduced to:

given: N, a#,

minimize: G(m, n, a, ~

over: n, m

s.t.: size constraint

n>0 real-valued vector 2
m > 0 integer (6.11)
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6.4.2 Optimal Solution

Proposition 6.1
-e

Given m, the number of levels in the hierarchy, and assuming

that a. > 1 for all i = 1, ... , m , then the solution of the optimiza-
I

tion problem 6.11, i.e., the optimal clustering structure, is such that:

(a) All clusters at the same level, k = 1, ..., m, are

composed of an equal number of lower level clusters; i.e., all nodes

at the same level in the tree representation are of equal degree.

The optimal degree vector reduces to an m-dimensional vector,

n = (nl,n2, .. ) whose components are the solution of the following

set of difference equations:

nk(i, im-l, ..., ik l) = nk - k 1, . m and (im ., k+l)

n = N
1( n

k-l k-l Dk"~( k-1 Di '...

(nk D. [~ai 1 ~ i=k.lni1 """i'](612

m A
where, by convention fl n. = 1 ; and Dk is the solution of:i=m+l k D

DU2 =1
k-2 (6.13)

Dk =calDk_1 + I ( i  1) kk 3=k

Also, Bk is the solution of:
25
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2 k-2 (6.14)

k -2 - - (1l -- lD k -O

[.Bl k -_Dkl [i1a i ] Lik-lD -

k>3_

(b) With this optimum solution, the minimum computational

cost is:

G(m, c' 8) = Bl (6.15)

The proof of Proposition 6. 1 is given in Appendix C. It

consists of showing when all other variables are fixed, that the

n 1 (*)s must all be equal (to n1 ). Then, n1 is replaced by its optimal

expression in the objective function, and the same operation is repeated

for the degrees at the next level, and so forth, until all levels are S

exhausted.

As a consequence of Proposition 6.1, the optimal size vector

also reduces to an m-dimensional vector, g : (gl, g2, "'', gm) , whose 6

components are given by

g0= 8knk k = 1, ... , m (6.16)

where nk is the solution of Eq. (6.12).

The computation of the variables Dk, Bk, nk may proceed

sequentially by computing the sequences below.
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(1) D3 , D4 , ... , Dm+i

B B B(2) D D " '
() 3 4 m+1

3 4I M+1I

(3) Dm  nm I  .. , I1.

where Dm

n L ( a i -) Bm 
-

n= a - (6.17) .•m m

n is the first element to compute in the sequence {nk}

Notice that one can also solve the difference equations,

(6.13) and (6.14) to obtain explicit expressions for Dk and Bk/Dk.

Explicit Expression of Dk

k k1e) j-2:
D k -= T (C 1)) k > 1 (6.18)

j=2\i=j i=l -

By convention, when the lower index in the product exceeds the upper

index, then the product is set to be equal to one. If the same situa-

tion arises with a summation sign, then the sum is set to be equal to

zero. This convention will apply throughout the chapter.

Explicit Expression for Bk/Dk
k-1

j-1
(a.• k-iE]Dk k-i TIa.

1)]1[Bk 
1

k - ' i 
io 1 

k[ j=2 PS )

¥k > 2 (6.19)
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The proof follows immediately from Eq. (6.14).

The combination of Eqs. (6.18) and (6.19), at k = m + 1,

will provide an explicit expression for the minimum computational cost,

G(m, a, 8). The next natural step to take is to perform the optimiza-

tion of G with respect to m. This may easily be done numerically when

m is restricted to a certain range of integer values.

Numerical Examples

Define G ( G, G, G). Recall that G is the computa-
2 ' 3- 4 k I o

th
tional cost for the design of the k layer subnets.

a = (2, 2.5, 3, 3.5)

(i) 8 = (1, 1, 1, 1) "g

m = 1 n = (10 ) i.e., N = lO3

6 AaG = 10 (G 4 Ne l for m= 1)

m 2 n = (25.08 , 39.86 ) Recall that n
is assumed to
be continuous.

G = (2.51 104, 1.00 10 )

G = 3.51 104

m = 3 n = (8.65 , 9.63 , 12.00 )

G = (8.646 10 , 3.453 10 3, 1.728 10 )

G = 1.38 104

m = 4 n = (5.46 , 5.22 , 5.58 , 6.29 )

2 2 2 2
= (54.61 10 21.85 102, 10.92 102, 6.24 10)

G = 9.36 10
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(ii) = ,(1 2, 2, 2)

m=1 n (103 )

G = 106

m = 2 n = (41.16 , 24.30 )

= (41.16 , 48.60 )

G = (4.117 104, 1.647 10

G = 5.76 10

m = 3 n = (17.29, 7.65 , 7.56 )

g = (17.29, 15.30 , 15.12 )

44
-- (1.73 104, .69 104, .34 104) :,:

G = 2.77 104

m = 4 n = (12.26 , 4.83 , 4.26 , 3.96 )

g = (12.26 , 9.66 , 8.52 , 7.92 )
44 4 4

G = (1.22 104, .49 10 , .25 10 , .14 104)

G = 2.10 10,

6.5 Optimal Clustering Stf-ucture with Uniform Design Strategy and

Gate Assignment

This section deals with the special case where the same design

procedure is used at all levels of the hierarchy. Also, an equal number

of gates is selected from clusters at all levels, i.e.,
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0k =ot -Vk >I > 1
(6.20)

Bk = B ¥ k > 2, 1 1__.

As a result, much simpler expressions are obtained for n and G at

optimality, given m. Furthermore, it is possible, analytically, to

find the optimum number of levels in the hierarchy. At global opti-

mality, all the layer subnets must be of equal size. This surprising

result has an intuitive explanation given below.

In what follows, first, the expressions for n and G will be

derived at optimality, given m. Then, the global optimum solution

will be determined and its peculiar properties will be studied, as well

as its behavior with respect to a and 8. Finally, comparisons with

intuitive feasible solutions will be made.

6.5.1 Optimal Expressions Given m

Corollary 6.1

Given m, the number of levels in the hierarchy, and assuming1

that at a c for i = 1, 2, ... , m; a > 1; and 8.= for

i = 2, 3, ... , m ; then, the optimal solution of Problem 6.11 is

M-1+

Z-1-

a0 D 0~

(n I = 8 x-l [](6.21)

m-k k-l

____ N]~~ Dm+lnk a - ) jk=2, ... ,m

la < I is treated in Section 6.5.4.4.
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With this solution, the minimum computational cost is:

r- D M_ (a m] ..

G(m, a, N)=D+ m. ";i

a (6.22)

k-i k-i
where Dk = k- (- for k > 1 (6.23)

Proof:
1

To prove Corollary 6.1, we need to find the expression for

Dk and Bk/Dk.

Expression for Dk -IP"

From Eqs. (6.18) and (6.20)

k
D E= ak - j (a -I) j -2  (.4

k-j j=2- (6.24)j=2

Now Dk  (a - )k_ .-'- °

i=0

After summing on i, we find Eq. (6.23).

Expression for Bk/Dk

From Eq.s (6.19) and (6.20)

k-3 k-2 k-i-2 (' k-i k-i i-I
i=D -)i= i=2 Nak-i

To evaluate the exponents involved in the above expression,

we need the following identity.

IThe same result as in Eq. (6.21) has been derived in [FRAN 72] for m = 2.
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n i x(nxn l  (n + 1)xn + 1)
ix = - for x 1 (6.25)i~~l ~(x-1 2 ..

From Eqs. (6.23), (6.24) and (6.25):

Sk-3k i+ k-i-2
cL)ct'Dk-il= a[k- - ( _-i 2]

i=O i=0

k-il
- (k - 2)ck - 

- ct(c - l)Dk I

Also k- 2 k-i-2 - )- = k 2 k-2 1

k-lV

1=1 i1=1

- (a - i)(ctDk_ - (k - 2)(ct- i) k-2)

Finally, the exponent of a is equal to a(c - l)Dk I. After substi-

tuting these exponents into the above expression of Bk/Dk and grouping

terms together, we get:

a a

-- N (6.26)

From the above equation at k =m +1 and Eq. (6.15) we ohtain

Eq. (6.22).

The proof of Eq. (6.21) will proceed by induction. First,

let us observe that from Eqs. (6.12), (6.20) and (6.26)

nk Dk a(a k

i=k+l '
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Factoring out the terms in a, a - 1, 8 and using Eq. (6.23) to evaluate

their exponents (to be denoted by exp C)) we find

k-i
exp (8) = c(co-l)Dk I  -aDk -a

exp (a) a(ot-l)Dk_l - D (k-2)akI ka-I + Dk+

k-i k-i
exp (a-I) = (k-l)Dk - a(a-l)Dkl + (k-2)(c-i)k-I : kakI - Dk+I

After substitution, we get

ak-i a k-I

I k [ nil Dk+l
nk n. k > 2k a-

S(6.27)
For k = m, the product term in Eq. (6.27) vanishes to one, and the

resulting expression of nm satisfies Eq. (6.21). Assuming that Eq.

(6.21) is true for i m m, m - 1, ... , k + 1, let us show that it is

true for i = k. .

From the induction hypothesis and Eq. (6.24),

a D  ..NIm-k+ I

JJ n. = N (6.28)
i=k+l 1 a - OT 

.L.,

Substituting Eq. (6.28) into Eq. (6.27), and using Eq. (6.23) to
V

simplify the resulting exponents, we arrive at the expression of nk as

given in Eq. (6.21). Since Eq. (6.27) is only true for k = 2, 3, ... , m

then it remains to be proven that n1 satisfies Eq. (6.21). This is

obvious from the expression of nI in Eq. (6.12) and from Eq. (6.28) for .

k=l.
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Remarks

Mi Size vector: From Eqs. (6.16) and (6.20)

g, nl, an=fl k 2, 3, .. m

Substituting Eq. (6.21) into the above expression, we get a unique

expression for gk1 valid for k =1, 2, ... , m.

(ii) Gate Constraint: To satisfy the gate constraint,

* Eq. (6.6), the vector n must be such that

n,>8 n k>l1 k 2, .. ,m

- . This condition will always be satisfied if

MN

*lna
a- 1

In the next section, we will show that the region of interest for m

will effectively correspond to the above condition.

* .. 6.5.2 Global Optimum

So far, we have solved for the optimal clustering structure

when m, the number of levels, is fixed. We now intend to let m vary

and, consequently, to solve for the global optimum.

6 Proposition 6.2

Under the condition of Eq. (6.20) and m being a real variable,

* -the global optimum clustering structure is achieved for a number of

levels

l"Global optimum" is used to distinguish the optimum solution with
respect to m. Also, *indicates values at global optimality.
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in N
M. O(6.29)

in -

and a degree vector n*

(6.30)

= a k 2, 3, •.m,
k 1

The corresponding minimum computational cost is

G (a, )a - ao  (6.31)

Proof:

Since Problem 6.11 has been solved when m is fixed, there only

remains to minimize G(m, a, 8) over m. Eq. (6.22) may be rewritten as

D
D 1 [H(m) ] m+ l

where H(m) represents the expression between the outside brackets.

Differentiating G with respect to m,

1 -

A dG M+ DI [ m)GI [H(M)] + "D"
m+l m+ i

InH(m)''I Dn 1 [1n H(m)]' - [In H(m)]D'
D DD 1m+l L m+l Sm+ 1

which we define as From Eq. (6.22)

in H(m) = a(a - ) In a 1  (m -1)am n a

rn-i m. (m- 1)(0- 1) ln (a- 1) a 1n N
II
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Differentiating ir H(m) with respect to rn, and substituting into U, we

arrive at

U a(ct 1) )in C' a 1 DJ+1Dm D D' 11

- m - i)a (in a) [D in a -D'
m+i m+i

+(m - i) (a -1) (in (a -i1)) [D in (a -1) D DI

+ mI )D in am D

+D [(a 1) min (a-i) -am na]

Aiso, from Eq. (6.23)

D' am mna- (a-i in(a- i)m

D I =amn a (a- 1 )mn in (a- 1) (6.32)
m+ i

Evaiuating the terms between brackets in U, we obtain

Dm~D D- DDI =a (a- i)m in i

m M a

D ina-D' =-a- ) min a
m+i 3+1 a-

Dm in (a-i) D' =ahin a

Repiacing those expressions in U/Dm+ DI we notice that the last
mi m+i

term of U wiii cancei with DI1 and we are left with

d.[H(m)] D+i am - I)' (in a2 -- in a( -i)m (6.33)

dm 1 S
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Since a > 1, 6' is of the same sign and has the same roots as

for all values of m. Equating the above equation to zero, we find m.

as given in Eq. (6.29). Also, for m < m,, G' is negative, and for

m > m,, it is positive. Therefore, we conclude that G is minimum for

m = m,, and m, is the optimal number of levels.

In order to find the corresponding optimal vector n, let us

notice that from Eq. (6.29)

(-- 1 (6.34)

Substituting Eq. (6.34) into Eq. (6.21), we arrive at Eq. (6.30).

There are two possible ways to evaluate the global minimum

cost G,.

(i) Replace m by m, in Eq. (6.22). After some algebra, using

Eq. (6.23), Eq. (6.22) may be rewritten as

1

aIa(a-l)D m m DM+I
6 a l _ Dmol (a- I m (a- N (6.35) .%V
(a-)

Then from Eqs. (6.23) and (6.34)
mi

D~1  (a - ~*N-1
m.+l

Substituting the last two equations into Eq. (6.35) at m = m, we

get Eq. (6.31), after simplification.
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th
(ii) When all the k level clusters are of equal degree, the

computational cost, Eq. (6.9), becomes

m m 'G(m, n, a, 8) = (AIni)(knk) (6.36)
• :: k = l i= k + l.

Substituting Eq. (6.30) into Eq. (6.36), we find

m*-G, (n[)a(n*/8) * -1.

Ot 1
= (n (6.37)1 (nfl8) - 1 .

Replacing n1 in Eq. (6.37) by 8 u - 1 we get Eq. (6.31). This last

operation terminates the proof of Proposition 6.2.

Remarks

1. Size vector: At global optimality, the size vector is

such that

g* k = 1,2,. m, (6.38)

Eq. (6.38) indicates that at optimality, all the layer subnets are of

equal size which depends only on a and 8. The explanation of this

very simple and interesting property will be the object of Section

6.5.3.

2. Gate constraint: From Eq. (6.38), since a > I,

> 8 k = 1, 2, ... , m

Hence, the gate constraint, Eq. (6.6), is always satisfied at opti-

mality. Moreover, as noticed at the end of Section 6.5.1, the optimal

solution, given m < m., will also satisfy the gate constraint.

3. Number of layer subnets: Eq. (6.31) may be rewritten as
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G" - )( a (6.39)2

From Eq. (6.38), we conclude that the number of layer subnets is

NL N )(c - 1) (6.40)

The above results could also be derived by counting the number of

clusters in the tree structure (Fig. 2.4). Let NCk be the number of

kth level clusters; then, from Eq. (6.12)

m

NCk n i  k = 1, 2, ... , m (6.41)
i=k+l

At optimality, given m, NCk is given by Eq. (6.28); and at global

optimality

NC = ( ' (6.42) . :

Hence, the total number of layer subnets is

m Mi-'l
NL.= . NC; = (a- 1)( ) -)

k=l /

The substitution of Eq. (6.34) into the above equation gives Eq. (6.40).

4. Cost distribution: The computational cost incurred in the

design of all the k th layer subnets is

a
G Ci( NC; y k = 1, ... m, (6.43)

which is to be compared with the total cost G,. For practical

situations, N/8 >> 1; hence, from Eq. (6.31)
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tN-i ) 1 --
Since C*N= N

Since NG*= N/n, then substituting Eq. (6.43) for k = 1 into the

above equation, we get

G. G* (6.44)
1

which says that the design of the 1 layer subnets represents

approximately 1/a of the total computational cost.

5. Behavior of the optimal tree structure with respect to a:

We will assume that 1 : i. Let us define a regular tree of degree K

as a tree whose nodes are all of equal downward degree K, except for

the leaves (downward degree zero), [KNUT 69]. As an example, a binary

tree is a regular tree with degree 2.

The global optimum solution given in Eq. (6.30) becomes, for

n* c - 1 k = 1, 2, ..., m. (6.45)

We are interested in the set of c's which yield to integer solutions,

i.e., to regular tree structures. If K is the degree of such trees,

then c must be such that

K
1 =K <> K- (6.46) r-~ I - I

Moreover, if a regular tree of degree K is composed of m. levels, then

mit contains K * leaves. Consequently, there is a one to one corres-

pondence between the set of regular trees of degree K (K > 2 integer)

whose number of levels is m. (integer > 2) and the global optimal

Ksolutions of Problem 6.11, where c = K- and N = Km* for

K 1
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K =2, 3, ., .Notice that the above set of aL's is contained in the

interval (1, 2] of real values, i.e., 1 < a < 2. Also, a =2 corres-

t ponds to a binary tree representation.

6.5.3 Irreducibility

WIN The simplicity of the solution, Eq. (6.38), obtained at global

*optimality leads us to consider a more intuitive approach toward its

derivation, based on irreducibility considerations.

Definition: An irreducible set of nodes is such that no computational

gain can be obtained through the application of the MR-T for the design

4 of the corresponding communication network.

Lemma 6.1: At global optimality, each layer subnet to be designed must

correspond to an irreducible set of nodes.

Proof (by contradiction): Assume that at optimality, there exists at

least one reducible unit. Then, the application of the MH-T to design

the network corresponding to that specific unit will reduce the corn-

putational cost for that unit and consequently for the total design.

This contradicts the fact that we have reached the global optimum.

Notice that the application of the M4-T to a reducible unit will

preserve the hierarchical structure of the network as defined in Section

6.3. This would not be true if the a's or a's, or both, were not equal

at all levels.

Assumption: Our intuition leads us to assume that for a given a and

8the size of an irreducible unit is unique.
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Fact 6.1: At optimality, all layer subnets must be of equal size, q,

and the number of levels must be equal to m.,

In NaI
aand ma (6.47)

a- 1

Proof: As a consequence of Lemma 6.1 and the above assumption, at

optimality all the layer subnets are of equal size. Let q be that

size; then from Eq. (6.5)

.n. q

= q(6.48)

n q/ k =2, ...,m

' From the size constraint, Eq. (2.1)

1/m
q q (6.49)

Substituting Eqs. (6.48) and (6.49) into Eq. (6.9), we arrive at 
z,-

G =N- 1) a0 (N/8)a/m (6.50)
(N/) / - 1

In order to find the optimal number of levels, there remains to mini-

mize G with respect to m. Differentiating G with respect to m, we get

N N
*Ba d 8 ( I) ( 1)a/ n~2[ (a - 1)/rn (6.51)

d dm 1 ]2

m2 N)

In practical situations, N/8 > 1. Under this assumption, dG/dm is of

the same sign and has the same roots as a - (a - l)(N/) I /m. Equating

this last term to zero, we get m = m., as given in Fact 6.1.
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From the sign of dG/dm, we note that G is minimum for m f m,. This

terminates the proof of Fact 6.1.

Conclusion: The assumption introduced in this section is intuitively

justified a posteriori, since the solution of

In N8 =1

ln ac- 1

with respect to N is unique and equal to N0 = Oca/(a - 1). In other

words, the optimal number of levels for a design of a network with

aa/Ca- 1) nodes is equal to one.

6.5.4 Variations and Limiting Behavior of the Optimal Solution with

Respect to the Design Variables

The behavior of the computational cost and the degree vector

at optimality, given m, will be studied with respect to m. Of impor-

tance is the fact that G(m) converges fairly fast to its minimum value,

versus m, and remains very close to that value as m grows to infinity.

A similar phenomenon will characterize the behavior of the nk's versus

m. We will also notice that, as a goes to infinity, the optimal

solution, given m, is such that all layer subnets must be of equal

size; such a property was, for finite a, only true at global optimality, .

i.e., m = m'.

The variations of G* and m, with respect to a, 8, N, do not

disclose any remarkable property, except that m, rapidly reaches its

asymptotic value as a becomes greater than 2.

In what follows, we will restrict the study to the practical
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situation where
N

S>I, > 1 (6.52)

6.5.6.1 Behavior of the Optimal Solution and Objective Function,

Given m

a. G(m) versus m: Section 6.5.2 showed that as m increases .!
from zero to infinity, G(m) decreases, reaching its minimum at m = m.

(note m, > 0 because of Eq. (6.52) and a > 1), and then increases. The

limit of G(m), as m goes to infinity, is:

1
G A limit G(m) " - 1  N (6.53)

Proof

Let us first derive some intermediary results. From Eq. (6.23)

D =X m 1 1 m > 1

Hence, when m goes to infinity

Dm1 /am 1"

"m+ i

ID

m/m+l a
(6.54)

DM+l -

D ,m,,m /Dml I..--

Consequently, substituting these limits into Eq. (6.35), we arrive at

Eq. (6.53). Notice that the difference

Go G. 6
(a- a - l
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is independent of N, and that the relative difference

G - G.
G N- 

goes to zero as N becomes large.

In what follows, four sets of figures (Figs. 6.2 - 6.9), each

corresponding to a specific value of the pair (a, 8), {(3,1), (3,3)

(5,1) (5,3)}, will be shown. In each set, the functions G(m)

and G(m)/G, are plotted with respect to m and for several values of

N, N = {50, 102, 10 , 10 4, 10 5, 1061. The curves, G(m) versus m,

illustrate the initially decreasing, then slightly increasing and

asymptotic behavior of the optimal computational cost for a fixed m.

By comparing G(m) to No, we are able to appreciate the enormous com-

putational gains obtained through the application of the HiT.

The curves, G(m)/G, versus m, illustrate the "locking" effect

whereby, once G(m) reaches its minimum value of m = m,, Eq. (6.29), it

will appear as if it remains indefinitely at that value. They also

illustrate the fairly fast convergence of G(m)toward a value close to

the minimum, for a value of m relatively smaller than m,. This indi-

cates that we may actually obtain most of the computational gains with

hierarchical structures whose number of levels (m) is much smaller

than the optimal ones (m.). Finally, the four sets are present in

order to indicate the effect of the design parameters a and 0 on the

behavior of the aforementioned functions. 3

b. nk versus m

Differentiating Eq. (6.21) with respect to m, we find, after

simplification
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260



N -N 10 6

102,1 -N =105
N=10

N 102

11

110 100
m
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dnk (-1rnk m+k-I m\~__\~k= 2 (In 1 In N + m In
dm nkD 2 (I [aOtO

D+ 1

For a > 1, dnk/dm is of the same sign as the expression in brackets (to

be denoted by Z). From Fig. 6.10, we notice that Z has a unique root,

mo, which is such that

1 + Lg Nl 1 1 + Log N/fl - m Lg /(a - 1)

. m.mm

01

m. + l/Lg oa(-l)-

Figure 6.10. Root of d nk/d m.

1m < m0 < m, +
0: In .* a- i

Also, for m < io, Z is negative and, conversely, for m > oO, Z is

positive. Z is equal to zero at a value of m, mO, which is independent

*D of k. Consequently, as m varies from zero to infinity

(i) all nkIs, k < mo, decrease, reach a minimum and then

increase toward their limits.
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(ii) all nk's, k > m0 , increase toward their limits.

The limit of nk for k fixed, as m goes to infinity, is

Va
"limit n1 = 8 a

imitn- k >2, k fixed

The proof is immediate, after observing that

rn-k
( nk- _ m( 1

limit 1 = limit a 0
D a m

and then, substituting this limit into Eq. (6.21). If we let k vary,

more particularly, if we let k = m, then

rn-im-I

limit me = + 0
m -* m+l

Hence limit n = 0

Moreover, In n has as an asymptote a straight line of equation
m

m - a + In a--- ,1 N

a a-

The behavior of nk versus m, for k m m,, exhibits the "locking" effect

as previous described. Moreover, this phenemonon is quite remarkable

here, since the limit of nk, as m goes to infinity, is equal to the

value of nk at global optimality. Fig. 6.11 illustrates the above

properties.

2
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IF
6.5.4.2 Behavior of G, and m, with Respect to a, 8, N

a. G* versus a: Differentiating Eq. (6.31) with respect to

a, we find

dG* N 1 )a ln8 a ini1

Under the conditions of Eq. (6.52) and a > 1, G, is an increasing

function of a. As a goes to infinity, G. will be asymptotic to the

expression, (N/8 - l)e(a - 1/2)8.

If 8 = I the asymptote is a straight line, which implies that

at the limit, G, will show a linear growth with a.

b. G, versus N: Eq. (6.31) shows that G, varies linearly withi-U

N. It is also important to notice that the optimal hierarchical struc-

a
ture reduces the computational cost from the order of N steps to the

order of N steps!

c. G* versus 0: Differentiating Eq. (6.31) with respect to

8, we arrive at

adG. aa  (%-2 '""

(a -a1)a- [(a - l)N - a8J.

Consequently, G. is an increasing and then decreasing function, as 8

varies from 1 to N (for N > a----- and under the conditions of Eq.
a- 1

(6.52)). Equating the derivative to zero, we find

a N (6.55)80

Substituting Eq. (6.55) into Eq. (6.31), we arrive at the maximum value

of G, (with respect to 0), G,(8 = 8) = Na. This maximum cost corre-

* * 0

sponds to a design with no hierarchical structure. This last equation
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checks with the fact that for a set a, B, N, satisfying Eq. (6.55), the

optimal number of levels, m,, is equal to one (Eq. (6.29)), i.e., for

such a set, a non-hierarchical design is optimal.

d. m, versus N and 0: Recall Eq. (6.29),

M,= (In N/B)/(ln a/(a - 1)). Hence, m, varies as a logarithm of N/a.

This logarithmic behavior appears to be characteristic of hierarchical

structures [CHOW 74], (see Chapter 2).

e. m, versus a: Differentiating Eq. (6.29) with respect to

a, we find

dm* in N/.
da a -1)[l (n ca/(Ca- 1))2

Consequently, for a > 1, m, is an increasing function of a. The

limiting values of m are

4 . 0!

da

+  + 0

a . 4±+lnO-

da- d 1n n N/IO

The asymptote, as a goes to infinity, is the straight line

* m, = (a- ln N/ _

Fig. 6.12 shows the plots of m, versus a for several values of N/.

Notice that m, rapidly reaches its asymptotic value as a becomes greater

than 2. Also,

N/IO
m =1 for a = N/- 1
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Figure 6.12. Optimal Number of Levels in the Hierarchical Design.
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which means that for 1 < a < N/ n
N/ - 1 , no partitionini is required:

furthermore, a loss will be incurred if we try to do so.

6.5.4.3 Limiting Behavior of the Optimal Solution, Given m, with

Respect to a 0

a. a : From Eqs. (6.21) and (6.23), we obtain

n,. + 0 for all k's, k m
+ 

k%

n 0I tim

In other words, since the limit of nm is zero, for any given m, m> 2,

then, no clustering must be allowed. This confirms the earlier result

obtained when looking at the behavior of m, with respect to a.

b. a- + : From Eqs. (6.21) and (6.23), we find

D 
"

limit -= Dtn I

L 00 mam
-

.

Hence, N1r

01 -1- 0 --> (6.56)
N /m

n (/N k=2, ...,m

Thus,

a + -> + 0 0(N) k = 1, 2, . m., rn

Consequently, as a goes to infinity, the optimal solution, given any m,

is such that all layer subnets are of equal size. Such a property was -- --

found to be true for finite a, only at global optimality.
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6.5.4.4 Optimal Clustering when ac < I

Notice that if

I <N_ O 1

then, from Eq. (6.29), we conclude that m, < 1, which means that no

clustering is needed for a satisfying the equation above. Let us show

that this result holds true if 0 < a < 1.

Proposition 6.3

Under the condition, 0 < a < 1, the global optimum of Problem

6.11 (with equal a's) is achieved for m = 1, i.e., no clustering is

required.

Proof:

By contradiction, assume that m > 1; then, similar to the

proof of Proposition 6.1 (Appendix C), let us fix m (m > 1, integer)

and all degrees, nk(im, ... , i (k = 2, ... , m), and solve the

reduced problem with respect to nl(i, ... , i2)'s, i.e.,

NC1  .

min: G= 2 [nl(i)] (see Eq. (6.8))i=l 1i"-i

over: nM(i)

NCI

s.t.: nl(i) = N (see Eq. (2.1))
:" ~i = I i i : "

nl(i) > 0 real variable

where NC denotes the number of 1st level clusters, and nl(i) denotes11
stathe size of an arbitrary I level cluster. Since a < 1, then [nl(i)]

is a concave function; hence, the objective function above, G1, is a
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concave function. Also, the set of feasible vectors, n1 = {nl(i)1 is

a bounded convex polyhedron whose vertices correspond to vectors with

all zeros except for one component equal to N, i.e., (N, 0, 0, ... , 0)

and its permutations. As a result, we are faced with the optimization

of a concave function over a bounded convex polyhedron, whose optimal

solution is well known to be at a vertex. At any vertex, G1 = N ;

consequently, it is the minimum. Notice that this result is true for

any NC1, i.e., for any nk(im, .. ' ikl (k = 2, ... , m). In other

words, for any vector n satisfying the size constraint, Eq. (2.1),

G > Na, which, combined with Eq. (6.9), gives

m

G(m, n, a, 8) > Na + F G.k(m, n, a, 8) n, feasible
k=2

Hence, G(m, n, a, 8) > Nc  ¥ n, feasible

Consequently, the optimal solution of Problem 6.11, for integer m > 1,

must also satisfy the above inequality which is a contradiction, since,

if m 1 1, G(m, n, a, 8) = N

Remark

Proposition 6.3 holds true for the general case where the

k's are arbitrary, if a1 < 1.

6.5.5 Comparison of the Optimal Solution with Two Feasible Solutions

Two intuitive solutions emerge when dealing with hierarchical

structures. The R-solution (R stands for root) corresponds to a regular 0

tree representation, i.e., all degrees, at all levels, are equal.

r n k 1, 2..., m (6.57)
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The Q-solution models the situation where all layer subnets are of

equal size.

q =k k = 1, 2, .•, m (6.58)

Notice that the two solutions are identical when a 1. The optimal

solution, given m, will be referred to as the G-solution.

6.5.5.1 The Q-Solution

This solution has been studied in detail in the course of the

proof of Fact 6.1 (Section 6.5.3). Of significance is the property

that the Q-solution satisfies Proposition 6.2 at global optimality.

The corresponding computational cost (denoted by Q) is given by Eq. "W.

(6.50). There remains to find the limit of Q as m goes to infinity.

From Eq. (6.50),

limit Q + ,

The corresponding asymptote is a straight line whose equation is

0 . -K M a 11i (6.59) -

.. - ..
6.5.5.2 The R-Solution

Nl/m '::'
From Eq. (6.57) and the size constraint, r N . With this

assignment, the computational cost is

R =N( a - 1)/m N + 8 cN-Nl/ m  (6.60)

Differentiating Eq. (6.60) with respect to m, we find

27.
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dR N(l)/m inN (N )Nl

d-a /_/ m  /
- (Ct - 1)(N 1 /m - 1) (8C1(N - N + N(N 1 / m - 1))] (6.61)

Nl/m,--,
If we let Y represent the expression in brackets and X N then

Y = -((1- I)(N - )X

+ 2( -l)N. + (2N-ct(N + 1))) X +(at 1)N(6(' 1)

dR .(6.62)
is of the same sign as Y. Notice that

dmn

X - Go > - -

X = 1+  > m + > Y = (N - 1)a1 > 0 (6.63)

X m+ 0 >m => Y

Thus, there exists a unique root, XR, which is greater than one. Let

mR be such that

I/m XRInN
N R XR .. In XR (6.64)

From the above remarks, we conclude that R is minimum for m = mR.

There remains to find the limit of R as m goes to infinity. From Eq.

(6.60), limit R = + c. The corresponding asyuptote is
*m r 4.00

= (N - 1) [ m+ 1 + ((1 - 2 ) (6.65)

6.5.5.3 Comparison of the Three Solutions "

Let us first summarize the properties of the three solutions.

1. All three solutions possess an optimal number of levels,
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m. (Eq. (6.29)) for G and Q, and mR (Eq. (6.64)) for R.

2. For large values of m, the G-solution is asymptotic to a

constant; whereas, the Q and R solutions asymptotically grow linearly

with m. In other words, for m > m*, G, contrary to Q and R, is not

sensitive to m.

3. The G and Q solutions meet, for any a, at m = m, and, for

(I , at any given m.

4. The Q and R solutions are identical for 0 = 1.

Figs. 6.13 and 6.14 illustrate the above properties. Moreover,

we notice that, as expected, G is always smaller than or equal to Q and

R, and that, for a r 1, Q is certainly better than R, for values of m

in the neighborhood of m,, but not necessarily outside.

6.5.6 Suboptimal Integer Solution

We propose, below, a heuristic algorithm which generates an

integer solution from the optimal real-valued solution.

Algorithm: Given N, m, g 0

1. M m, OLD N N [save old values]

2. Compute nm from Eq. (6.21)

ndm *- nI ceiling operation

N 'N - adjust size constraint

m

Ifm > I GO TO 2.
m

Else nd rN1, ND find.

7i=l
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Figure 6.13. Comparison of the Optimal Solution with Two Feasible Solutions; N =1O0,a= 3.
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Figure 6.14. Comparison of the Optimal Solution with Two Feasible Solutions; N 104o, at= 5.
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3. m M, N OLD N

4. DO i = 2, 3, ... , m

OLD nd. - nd.

: nd. 4* [ ndi1
1 d ND ndii

ND (ND) (nd i) -0

OLD nd.
1

5. Compute corresponding computational cost

GD = : (fi nd) (8k(ndk)
k=l i=~ 1 ) -k ."-.

The main idea underlying the above algorithm is to always

compute the degree of the highest level cluster; then after readjustment

of the number of nodes, N, the operation is repeated for an equivalent

problem with one less level. This idea is incorporated in Step 2. The

purpose of Step 4 is to adjust the integer solution, {ndi} , obtained

in Step 2, in order to reduce the slack in the size constraint, i.e.,

in order to reduce the difference between ND and the given value of N.

The global minimum may easily be obtained when m is restricted

to a certain range of values. This could be done by computing the cost

incurred for each m (using the above algorithm) and then choosing the

number of levels which corresponds to the minimum cost.

The performance of the above algorithm is illustrated in the

following sets of figures, Figs. 6.15 - 6.18. These figures must be

compared to those corresponding to the real-valued solution, Figs.

6.2 - 6.9. We notice that the plots of G(GD) versus m roughly exhibit

the same shape as found for the real-valued solution. The two solutions
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* Figure 6.16. Ratio of Suboptimal Integer Solution, Given m, to the Real-Valued Global Optimal
Solution; a = 3,3 3.
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Figure 6.18. Ratio of the Sub-optimal Integer Solution, Given m, to the Real Valued0

Global Optimum Solution; a =5. 3=1
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are also fairly close for small values of m. Moreover, the algorithm

seems to work better in the smaller region of az, and it appears that it

is not that sensitive to 8. The plots, GNIG., show the initial fast

drop in computational cost followed by a levelling behavior to a value

within 2G* for at 3 and SG* for a =5, and which seems to be fairly

independent of N.

6.6 Application to Other Special Cases

This section deals with the following two cases:

(i) uniform design strategy, variable gate assignment, i.e.,

k = 1, ... , m and k 's variables.

(ii) proportional assignment of gates.

This section is treated in Appendix C. A summary of the

results is presented below.

In (i) explicit expressions for the optimal degree vector and

computational cost, given m, have been derived. Some partial results

related the the global optimality have been found when Bk is of the form
k>2k

thWith respect to (ii), the number of k level gates to be

* selected is proportional to the number of k-1~ level gates from which

they are selected. The corresponding solution was found to be of no

practical interest. The solution is

(n1 =0 nm +~ a

n .. n 1 ~ any value different from 0 or
- m

such that RI n. =N.
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6.7 Delay Expression for Hierarchical Networks

Given a network with an m-level hierarchical structure, the

problem is to express the total average delay in the network in terms

of the average delays in the layer subnets composing the network. We

thwill assume that all k layer subnets are of equal size, i.e.,

nk(im, m-l' ***, k = nk #k = 1, ... , m

and that they will induce the same average delay, Tk, over the traffic.

This last assumption will usually appear as a design constraint, and as

such, it is a reasonable one.

The traffic in hierarchical networks may be divided into m

classes. Class k traffic is defined as the traffic between pairs of

thnodes which belong to the same k level cluster but not to any lower

level clusters. If we define Tk as the average delay incurred by class k
k traffic, then obviously

T =_ r -T k (6.66)
0€]

where r = total class k traffic
k

r, T are as defined in Eqs. (4.1) and (4.2)

From Flow Assumption 6.1, we know that class k traffic, when going from -

its origin to its destination, has to go up through k-l layers to the

kth common layer. Then it will go down k-l layers in a manner described

by Fig. 6.19.
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Figure 6.19. [Iustration of the Tree Path of class-k Traffic.

Consequently,
k-i

T k =2 T + Tk k > 1 (6.67)

rmay also be evaluated using the flow assumption but, in general, it

will yield too complicated an expression. If we assume a uniform

traffic pattern, i.e., y. y (~),te

r k N N(nk 1) n(' y k > 1 (6.68)

Proof:

Let Che a kt level cluster, and let Ckl(i) and Ckl(j) be

two arbitrary k-t level clusters which belong to Ck* The traffic
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exchanged between ck~)and Ckl(j) is, according to the previous

definition, a class k tr-iffic. The number of nodes in a k-I st level

k-I
cluster is equal to (see Fig. 2.5) R n.. Hence, the volume of traffici=l

k-i 2
from Ck l(i) to Ck_l(j) is, for any (i,j), (k n.) yk 1i=1 J

The number of pairs of k-1st level clusters in a k th level

cluster is nk(nk - 1); also, the number of kt h level clusters is

m
I n.. Consequently, the total amount of class k traffic is

i=k+l 1

rk (klni)nk(nk- )(1 ni (6.69)

From the size constraint, Eq. (2.1), we know that I n. = N. Substi-
i=l 1

tuting this last equation into Eq. (6.69), we find Eq. (6.68).
M•

Notice that Eq. (6.68) checks with the fact that I I = .k=1 k-

We are now ready to derive an expression of T in terms of the

TkIS.
k6

Proposition 6.4

Under the above assumptions, the total average delay in a

hierarchical network is

1 1[(N mk_-Ik) -1(2N (n + 1)

[(N - m n-i m + MnIE - (nk k-i Tk
k=N k= =I= 1-

(6.70)
Proof:

A
Substituting Eq. (6.67) into Eq. (6.66), we arrive at -

T = + 2 * i)Tk (6.71)
k1i=ki 1
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Notice that Eq. (6.71) is a general oxpreision of T in terms of iks

which does not use the uniform traffic assumption. From Eq. (6.68),

m k-i-
r + 2 r. = Ny(2N -( k + 1) l ni) (6.72)

1kk i=l 

Substituting Eq. (6.72) into Eq. (6.71), we find Eq. (6.70).

1
Numerical example

N 10 , n1 =n =n 3  10, 1;
2. 3

T : 0.9T + 1.82T + 1.99T (6.73)3 2

6.8 Conclusion

In this chapter we studied the major aspects related to the

hierarchical design of large computer networks. The focus was primarily

upon the determination of a certain clustering structure of the set of

nodes to be used in the design phase. Optimal clustering structures

were determined so as to minimize the computational cost required in the

design phase. The general solution (i.e., different design strategies

and gate assignment from one level to another) was derived when the ' . 1
number of hierarchical levels m is fixed. The global optimum solution

was obtained with the more uniform case whereby the same design strategy ".

and gate assignment are used at all levels. The global optimum solution

is such that all degrees at all levels (except the first level) are

equal (all layer subnets are of equal size). Such a peculiar property

'A similar expression as in Eq. (6.73) iP given in [NAC 73]; It is

T =I' + 212 + 21
3 1
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was found to have an intuitive explanation. Furthermore, we mention

the one-to-one correspondence of the global optimum solution for

O= K/(K - 1) with some regular trees of downward degree K. "-

Finally, we were able to decompose the average message delay

in a hierarchical network in terms of the average delays in the layer

subnets composing the network.

_• 0 i
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Q-APTER 7

CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH

7.1 Conclusions

Faced with the prohibitive cost of a simple extrapolation of

present design and routing procedures for large networks, the goal of

this dissertation was to evaluate some new techniques to be used in the

context of large networks. The techniques studied here represent an

extension of present schemes and rely mainly on the natural hierarchical

clustering of the network nodes. More specifically we specified, eval-

uated and discussed the adaptive rn-level Hierarchical Routing (!41R)

schemes as well as the rn-level Hierarchical Topology (M4-T) design of

large networks. The results obtained are summarized in Section 1.3.

Basically, in this research we were able to show that:

1) Under some reasonable cost and performance constraints for

a class of large distributed networks, present routing schemes become

infeasible, whereas hierarchical routing schemes with optimally chosen

table lengths maintain remarkably good network performance for a phe-

nomenal range of network sizes.

2) Some optimal structures were found to minimize the corn-

putational cost involved in the hierarchical design of large networks.

3) Some extensions of existing queueing models for networks

were introduced in order to accornodate nodal storage requirements and

line overhead due to routing updates which become critical in the context

of large nets. Furthermore, several buffer sharing schemes were pro-

posed and analyzed in order to optimally utilize the nodal storage.
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7.2 Future Research

While there exi.,ts an abundant literature on issues related to

the design of small and moderate sized networks, thie sttudy of' large

networks is still in its very early stages. Consequently, we do nlot

only inherit unsolved (or poorly solved) problems related to computer

networks, but also those adequately solved need to he reevaluated ini

the context of large nets. Of importance are issues related to the

flow control, reliability, security and distributed data bases. We

also must not forget the long-standing search for exact solutions of

the topology design problem and for more precise analytic network

queueing models.

As for research areas which emerge directly from this work,

we mention the important issue of clustering, i.e., assignment of nodes

to clusters, clusters to superclusters, etc. We briefly addressed that

question in Chapter 5, but further work is certainly requi red. Other I

clustering techniques (such as those based on a graph theoretic approach)

must be investigated and experimented with. The same issue arises in

the topology design of large nets where altogether different nearness

measures and clustering techniques may be required. Moreover, the--

hierarchical design procedures should be compared to the non-hierarchical

ones on some theoretic grounds, rather than through experimentation,

using those algorithms which we here proved to be extremely expensive

in the non-hierarchical case. We conjecture that some further limiting

results of interest are possible.

Some new routing schemes and design methods should also he

investigated.
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Finaally, it appears that the general methodology and decom-

position ndels developed here for the study of large nets, may be

directly applicable or extended to more general large systems where

some sort of decomposition must be introduced to alleviate the diffi-

culty in analysis, design and evaluation. The identification of such

systems and their study represent a worthwhile investigation.

9
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APPENDIX A

PATH LENGTH IN GRID AND TORUS NETWORKS

The purpose of this appendix is to derive closed form expres-

sion for the average path length in Grid-type networks. Also the

distribution and the corresponding z-transform of path lengths in a

Torus network, are defined and determined.

A.1 Definitions

Let (S, A) be a network composed of a set of nodes S and a set

of arcs A. Let s, t be any pair of nodes in the network and 7s be

any path between the two nodes [HARA 72], [HU 69]. Also let a. repre-

sent the length associated with arc i, then the length of a path 7r5 i

is defined as,

Y(Trs) = a. (A.1)
st 1 :

st"

L.
The length of the shortest path from s to t, is

hst A min {(rst)"
all .'

hst as defined above is a distance function [HARA 72], [FRAN 71]

If the length of all channels is assumed to be equal to 1, then ,

h represents the minimum number of hops (channels) between s and t. ,
st

The average (shortest) path length in a network is defined as

[KLEI 64],
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h h (A. 2)
N(N- 1) s S ht

s'tCS

where N is the size of the set S. In some instances it is of interest

to consider the weighted average path length, hwo

hw= Ysthst (A.3)
s , t S

where yst is the weight on the pair of-nodes, s, t, and

r A Ys't (A.4)
s.-teS

Notice that if all the y 's are equal then Eq. (A.3) reduces to Eq.
st

(A.2).

The diameter, d, of a network is defined as the longest

shortest path in the network, i.e.,

d = max {hti (A.5)
s,t S

In the rest of this appendix we will restrict our considerations to the

hop distance.

A.2 Average Path Length of a Grid

Let G be a rectangular p x q grid as shown in Fig. A.l. Let

s of coordinates (x, y) and t of coordinates (u, v) be two arbitrary

nodes in G. Then from Fig. A.1 we see that

= lu - x( + Iv - (A.6) -

Let H (x, y) denote the distances (length of shortest path) from s to

all other nodes in G,
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Hs(x, y)A hst (A.7)

Substituting Eq. (A.6) in the above equation, we find

p q
H (X; y) d ~(u- X1 IV-yI) (A.8)

u-1 v--1

p q
Also Hs(x, Y) =q E lu xI +p L(v y)

=1" v=l

and
s(X, y) = qF2 _p_+1)x__P _ +_1)]__y2_

q - (p + 2x + P( 22 1) + p  - (q + 1)y + q(q+ 1)

(A.9)

Eq. (A.2) may be rewritten as,

p q
h= N(N- 1)s : H(X N(N- 1) x= l (x y) (A.10)

Substituting Eq. (A.9) into the above summation, and after some

algebra, we arrive at

p q 12 12F yl H s(X' y )  q q p (p  l)(p - 3) + pq(q + l(q -I

X=l y=l

Also N(N - 1) pq(pq- 1) (A.11)

Hence h =p + q (A.12)
3

From Fig. A.1, we can immediately see that the diameter of

G is

d = p + q - 2 (A.13)
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For a square grid p =q Vrhen ce

2 (A. 14) 5

A.3 Average Path Length of a Torus .
A torus is a grid where the outside nodes are connected

together in a ring-like fashion, as shown in Fig. A.2. The purpose ofU

the external rings is to introduce topological symmetry with respect

to the nodes. In other words, all nodes are topologically equivalent.

As a consequence, the distribution of path lengths from a given node

to any other node is the same for all nodes. Hence the average path

length simply becomes,

1 hs H (, y)(A.15)

where s is an arbitrary node of coordinate (x, y). In order to sim-

plify the calculations we choose s as shown in Fig. A.2. This figure

shows all such nodes s, for all cases except for p odd and q even,

which is equivalent to p even and q odd. The addition (to a grid)

of the external links does not affect the computation of H (x, y) for
5

such a choice of s; hence the result in Eq. (A.9) is true for those

nodes. Also the diameter of the torus is equal to the distance from's

to the upper right corner node. Several cases to consider are:

or i. p, q even

1
h= N-i H s [p/2, q/2]
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Since N = pq and H is given by Eq. (A.9), we get

2 2h qP +Pq
. 4(pq- 1)

. (A.16)

d = q2

ii. p, q odd

h H1H s~ 2 2 .1

h = q(p I 1)(p - 1) + p(q +1)(q -1) =p .q
4(pq- 1) 4

+ 2 (A.17)

U~ Pi.p vn q d
2

ii.p even, q odd

= 1

h qp 2 p(q + 1)(q -1)
4(pq- )

(A.18)

2

iv. p odd, q even

h= N_ 1 1~(

4 2
1 h = q(p + l)(p -1) + pq

4(pq - 1).I ! (A. 19)

-_ _ 2

,1 Square TorusK For a square torus p = q = V
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-, r, - . ° .; r .. , --i . - --. . - - - . . - - . - . - - - - . .- .. ;

1 F

i. p even

3h= N3 /2
p 1) 2(N -1) (A. 20)

d =p FN

ii. p odd
h -=. --

( 2 2
t (A. 21)

d = p-i = V- i

Notice that for a large N Eqs. (A.20) and (A.21) are equivalent.

Hence in the study of large tori, we will not differentiate between

the two cases above.

A. 4 Distribution of Path Lengths in a Square Torus

Let hs be a discrete random variable which represents the

distance (length of shortest path) from an arbitrary node s to any

other node in the network.

The probability distribution of h is defined as,
-S

prh s =k number of nodes at a distance k from s
rs kN -I

The corresponding z-transform is defined as,

Hs(Z) = kr~s = k] (A. 23) ..
k

Similarly, let h be the random variable which represents distances in .

the network. The probability distribution of h is defined as
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P[h k] number of pairs of nodes separated by a distance equal to 
k

r N(N - 1)

(A.24) 4

Also the corresponding z transform is

H(z) - [ zkPr [h - k] (A.25)
k ,

Evaluation of H(z) for a square torus

. Since a torus is symmetrical with respect to any node, then,

h = h=> H (z) ;1H(z) L s E S. (A.26)

Consequently we will evaluate the transform at a particular node s.

When p = rN is odd, the evaluation of H s(z) is straightforward at our

previous node s. Fig. A.3 shows node s and contours of nodes at equal

distance from s.

CONTOUR OF NODES AT THE SAME DISTANCE FROM s.

I I-- ,

C /' \ \,,\

/ - / -. \ \<

C \'\S/ , S
1/ /

0 x V

0 2 p+1 P
2

Figure A.3. Square Torus.
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If we define Nk as the number of nodes at distance k from s, then

4k 1 < k < 1
2

N (A.27)
S+ 1k) p+1<k <p 1

2

Note that Nk = p - 1 = N - 1 (A.28)
k=l

From the definition of the distribution of path length, Eq. (A.22)

N- 1 1 <k <p - 1
P r[h k] J (A.29)

(0 otherwise

Substituting Eq. (A.29) into Eq. (A.25), we arrive at

p-i Nk k
H(z) k N - k

k=l z(.0

and from Eq. (A.27),

H(Z) = N " Y kzk + p (p k)zk
k=l k=(p+l)/2

To evaluate the above summations we need the identity below

n k z n+l n
4. kz = (1 + nz - (n + 1)z)
k=l (l-z)

Then after some algebra, we find

4 ( 1 pl/2 Rl' (p+lpI2~H(z) =2 (A. 31)

(N - 1)(1 z)

310



Remarks

i. From the definition of the z-transform (Eq. (A.23)) H(z)

must be such that H(I) = 1. This fact can be easily checked using

1'Hopital's rule.

ii. HI'(l) represents the average of the random variable h.

It corresponds to the actual average path length (in hops) in the net-

wark. Hence, from Eq. (A.21), H(z) must be such that

H'(l) = h = p/2 (A.32)

Differentiating Eq. (A.31) with respect to z, we find

H'(z) = 
3 [1 + Z - (p - l)z p + l + (p + l)z p - 3z (p+l)/2

(N- 1)(1 -z) 3

p - 1 (p+)/2 p + 1 (p-l)/2]

2 2

The application of l'Hopital's rule to H'(z) at z = 1, shows that

effectively Eq. (A.32) holds true.

iii. For p even, Eq. (A.31) is no longer true. However, for

a large N (as is the case in Chapter 4) we may confidently use Eq. (A.31) g

in both cases.
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APPENDIX B

ANALYSIS OF SHARED STORAGE

IN A COMPUTER NETWORK ENVIRONMENT

Our earlier considerations (Chapter 4) lead us to model the

store-and-forward (S/F) function of a node, as R MIMI1 queueing systems

which share a finite waiting room, under some scheme (see Fig. 4.12).

The purpose of this appendix is to analyze and compare a few existing

and/or intuitive schemes as well as others motivated by the limitations

(or deficiencies) of the former.

The first (and simplest) scheme is the Complete Partitioning

(CP) scheme where actually no sharing is provided, but where the entire

storage (waiting room) is partitioned among the R servers (see Fig.

B.l.a). At the other extreme is the second scheme, Complete Sharing

(CS), which is such that an arriving customer is accepted if space is

available, regardless of its class, i.e., independently of the server

to which it is directed (see Fig. B.l.b). CS succeeds in achieving a

better performance than CP (smaller probability of blocking) under

normal traffic conditions and for fairly balanced input systems. How-

1ever, for quite asymetrical input rates (Xi i = 1, ... , R), CS tends

to heavily favor servers with higher input rates, even though they may

be close to saturation (input rate equal or almost equal to service

rate). The failure to recognize servers at or near saturation results

in most of the space being occupied by customers waiting for those

iThis remark assumes that all servers have equal service rates.
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servers, at the detriment of the others. Moreover, even with perfectly

balanced arrival rates (i.e., X. X i = 1, ... , R), under heavy1

traffic conditions (X >> pC), CS fails (where CP succeeds) in securing

a full utilization of all the R servers.

The above considerations intuitively indicate that contention

for space must be limited in some ways. In order to avoid the possible

utilization of the entire space by any particular type(s) of customers,

we impose a limit on the number of buffers to be allocated at any time,

to any server. This idea is incorporated in our third scheme: Sharing

with Maximum Queues (SMXQ), Fig. B.l.c. Of course, the sum of those

maxima must be greater than the total space if some sharing is to be

provided. The SMXQ, however, does not guarantee a full utilization of

the servers under heavy traffic conditions. This deficiency motivates

the fourth scheme: Sharing with a Minimum Allocation (SMA) scheme.
V

With SMA, a minimum number of buffers is always reserved for each

server and, in addition, a common pool of buffers is to be shared ai.tng

all the servers, with no constraints on the queue size (see Fig. 3.1.d).

The shared area is again prone to be, as mentioned earlier,

unfairly utilized, and hence the fifth and final scheme: Sharing with

a Maximum Queue and a Minimum Allocation (SMQMA)(see Fig. B.l.e).

Rich and Schwartz [RICH 75] studied a scheme very similar to

SMA except that the entire common storage is dynamically allocated to

one server at a time. Moreover, problems of this sort are frequently

encountered in telephony and are referred to as graded systems [KUHN 73]. -

[SYSK 60]. Their main interest, however, is in sharing (extra) lines

as opposed to storage.
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In this appendix, we intend to characterize the five schemes

under steady state conditions; namely, we derive expressions for the

probabilities of blocking, the joint and marginal distributions, the

average time in system and the throughput for different types of cus-

tomers. The key to the analysis lies in the fact that, in steady state,

the joint probability distribution obeys the well known product form

solution for networks of queues [JACK 57, 63], [GORD 67], [BASK 75],

[BUZE 71], [WONG 75], [KLEI 75, 76] (and the bibliographies therein).

A comparison of the sharing schemes is also provided.

B.i Complete Partitioning (CP)

With CP, we are in the presence of R separate and independent

MIM1I queueing systems with finite waiting rooms (Fig. B.l.a). Queueing

system i (i = 1, ..., R) is characterized by a Poisson input stream of

rate Xi, an exponential service time of mean 1/1 i and a finite storage

of size b.. Customers destined to server i are referred to as type or

class i customers. Arriving customers who find no space in their

respective queues depart without service. Accepted (non rejected)

customers are served on a First-Come-First-Serve (FCFS) basis.

The basic equations describing the behavior of any of the

queues (say subsystem i) are well known (see for example, [KLEI 75]).

Let n. be the number of customers in queueing system i (i.e., type-i

customers) and Pr[n i = k] be the probability, in steady state, of having
6.

k type-i customers (in queue and server), then
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1 - p.1Pi k

Pr [n. = k] = (B1)

0 otherwise

Where p= x/PC

Also, let PB. denote the probability of blocking for type-i customers,1,-
ii

then [KLEI 75]

1 -P b. F
PBi = b.+l 1i (B.2)

1 - Pi

Let ni be the average number of type-i customers; then r
b b. 1+b.

Pi 1 (1 + bi)p i  + bipi
n. = k P [n = k] -1+b.k= Pi

(B.3)

Let X' be the average rate of non-rejected type-i customers, i.e., the

1

throughput of server i; then

= (1 -PBi)X. (B.4)

Also if t. denotes the average time in system (queue and server) of non-
1

blocked type-i customer, then from Little's result

• "t. = ni/X- (B.5)

b. 1+b. P
l/PCi 1 - (1 + bi)pi1 + bip i  1

Thus, t1 1 1ib (B.6)
i 1 b.
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The state of the entire system can be described by the vector

n = (nl, n n ); since all the subsystems are independent, the

joint probability distribution in steady state (to be denoted by P(n)

or P(nl, n ..., nR)) is

P(nl' n nR = n. =  i  Pi n e Fa"

l \i=l b1- i

= 0 otherwise (B.7)

Where the set F is the set of feasible vectors,
a

F In integer valued vector, s.t. 0 < n. < b., i = 1, ... , R}

(B.8) ,

The subscript "a" is used here to remind us of scheme (a), i.e., CP.

Notice that the constant term in Eq. (B.7) is, of course, the

probability of the entire system being empty, i.e., P(O, ... , 0). That

term will be denoted in the sequel as P0'

This terminates the analysis of CP in its general form. A few

more remarks are presented below.

i. b and pi < 1; we obtain the usual MIMI1 result

] = = k] (1 - pi)p (B.9)

ii. P ; from Eqs. (B.1) and (B.2), we get

PB. "1 11

A- n. -b.i "
t " 1 b (BlO)

t.• - bi Ci
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iii. P= 1; all states n. = 0, 1, ... , b. are equally probable

and
PB.=11 + blb. I (B. 11)

- b.
ni -7.1
1L 2 "

We now proceed with the analysis of CS. The definitions and

notation introduced in this section are valid throughout this appendix.

B.2 Complete Sharing (CS)

We now combine all the individual waiting rooms in a global

one (see Fig. B.l.b) whose size will be denoted by B. Empty space is

allocated on a FCFS basis regardless of the type of arriving customer.

Drukey [DRUK 75] analyzed this system with the assumption that all the

PI's (Pi = i/PCi) are equal; for the general case of different pIs,

he restricts his study to two classes of customer (R = 2). In what

follows we intend to analyze the more general case of arbitrary Pi's

i =1,..., R, and then we apply our results to the special case of r

equal p 's. The forms of the expressions in common with Drukey's differ

because of the network of queues approach used here.

B.2.1 General Case

In this section, the p's are not necessarily equal. The r

sharing of space introduces dependencies among the R queueing systems.

The entire system is a birth-death process whose state can be simply

described by the vector n = (n1, ..., nR). From the state-transition-

rate diagram of Fig. B.2, we can write the set of balance equations

below, describing the behavior of the system in steady state (steady

3181
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state is always reached, even for p> 1, because of the finite number

of states in our ergodic Markov chain).

IF ni>1 TRANSITION ALLOWED IF ni >, 1

1,-..ni-1,..,n

XR Pi

only if nR > 0 TRANSITION ALLOWED only if I ni < B

Figure B.2. State-Transition-Rate Diagram.

Let J = jsuch that n. 01 two sets of balance equations are

presented below which depend on whether or not the total number of

* customers is less than or equal to B.

i. For all n's, such that E.n. < B, we have

R R

A~ )P(n1,., n1 -1, ..... nR + 11 jjP(nl, . .. n +1, .. ,nR

i~j

i R
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ii. For all n's, such that E.n. = B,~1 1

R
A P(n , ... ni-1, nR) = 1 1i.P(n ... , n i , ... , n R)

Let Fb be the state of feasible states, i.e.,

R I
Fb n, s.t. 0 < n < B 0 < ni < B

i=l

Then, we claim that the steady state joint queue length (queue + server)

distribution is such that
nn n

P o P lP2 2 .. .PR  n c Fb

P(n) = (B.12)

0 otherwise

where P is a constant; more precisely, it is the probability of an
0

empty system P(O, 0, .... 0).

To prove this claim it is sufficient to show that Eq. (B.12)

satisfies the above balance equations; this is easily shown to be the

case. Notice also that the product form solution satisfies the local

balance equations. In the present situation, the local balance equation

[CHAN 721, [KLEI 75] is the one which equates the rate of flow out of

server i, due to the departure of customer (type-i), to the rate of

*flow in, due to the arrival of a customer, to server i. This approach

will be used to analyze the other schemes whose global balance equations

are more difficult to write.

We are now left with the evaluation of P0 for that we take

advantage of the fact that all probabilities must sum to one, hence
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'l nI '2  'R

P = Pl P.2 "R (B.13)
0 1

nEFb

Let us define G(K) as
nI  n R

G(K) = PR (B.14)
a<n. <K

. - E.n.=K
1 1

Then, obviously
B

P 0 = 1 G(K) (B.15)

K=O

Several efficient altorithms exist to compute G(K), [BUZE 71], [WILL 74]

[MOOR 72]. Moreover, if all the Pi's are different, we can use the • ;

generating function approach to derive a closed form expression for

G(K), [MOOR 72]. Briefly, we let

R 1 R 2
g(t) I = IT (1 + t + p t + .) (B.16)

i= (I- pit) i"l 1 1

By expanding the second product we recognize that G(K) is the coefficient

K.of t i.e.

g(t) = I + G(l)t + G(2)t 2 + ''' + G(K)t K + "'" (B.17) .

Also, if the pI's are different (P. # P.), then the partial fraction
1 J

expression of the first product in Eq. (B.16) gives

R R A._____

Ri (1 .t P

where A. = 1

1 k=l (1 *i
k~i

1This condition will be assumed to be true throughout the rest of this

section.
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Hence

R K
G(K) = A ip. K = 0, 1, 2, ... (B.19)

J=1

Then, from Eqs. (B.13), (B.14) and (B.19)

B R R B

K=O i=l il --=

and B+l
R 1 -P i

- A 1 (B.20)

II

Eqs. (B.12) and (B.20) completely characterize our system in

the steady state. Notice that for R = 1, A1 = 1 and we find Eq. (B.1)

for B = b.. We now proceed to derive the distributions in steady state

or expressions of other variables of interest.

Distribution of the total number in system; Probability of Blocking

Let n be that number and P = P [n n] be the corresponding pn r

distribution; then obviously

P= P G ( n )  G(n) for 0 < n < B

n n -- -
G~k) (B.21)

k=O

0 otherwise

* Since we have Poisson arrivals, then the probability of blocking, PB,

is simply the probability that n = B. Notice also, that PB is indepen-

dent of the customer's type (PBi  PB 1, i 1i.... R)

PB = PoG(B) (B.22)00

f.
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Marginal Distributions and Averages

Let us first derive the probability that there are more than j

type i customers in the system, Pr[ni > i]. That probability is equal

to the sum of P(n) for n C Fb and such that n i> j; after some algebra

we find (for 0 < j < B),

B-j
P r[ni > j] = P0p F G(n) (B.23)

n=O

The average number of type i customers is

B B B-j
n [ni > j] = P0 E Pi 6(n)

j= r j=l n=0

Interchanging the summations above, we arrive at

B-i B+l-n

n B-I (n) E P = P0 1 - p. G(n)
' ni 0 PO 1-  P.) Pi1-

n=O j=l n=0 1

B-1

x (I - PBn)G(n)Pi =
hence = n40

I 1 _P B(B.24)
G (n)

n=0

As for the expression of the average total number in system, it is

simply n = .n.. Another expression can be derived from Eq. (B.21),
1 1

B
n P 0 L kG(k)

k=l

From Eq. (B.19)
B R R B

n. P_ _ __ _ 2 .p
A ip. Y ~Ai Ykp.k=0 i=l Pi=l k=

R 1+ Bp.B (B + 1)B1)p

Thus n = P0  A. 1 2  (B.2S)

Pl(-

where P0 is given by Eq. (B.Z0).

01
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Notice that if R 1, then n nl, as found in Eq. (B.3). Eqs. (B.4)

and (B.5), for the throughput X. and the average delay ti, hold true1 1

here.

This terminates the characterization of CS in its more general

case. Of interest is the study of its behavior under some special

limiting conditions of storage and traffic.

B.2.2 Limiting Behavior

We consider the two cases; first, when B goes to infinity, and P

second, when all arrival rates increase uniformly toward infinity.

Infinite waiting room B

For the existence of a steady state, it is necessary that

P. < 1 (i = 1, ... , R). With this condition, we expect that at B =

the system becomes equivalent to R independent MIM[1 queues. From

Eq. (B.20) and since p. < l,

R A.
limit P = 1

B~1 p.0B i=l

which is the value of g(t) (Eqs. (B.16) and (B.18)) at t = 1, hence,

R
P i=l (1 P)

R n.
Thus from Eq. (B.12) P(n) = I (1 pi)P

i=l 1

* Moreover, from Eq. (B.23) we can see that at the limit

(n= > j) p. P (n j) = (1 - pi)p.

rni I r111
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The last three equations prove the fact that the system is equivalent to

R independent MIMI1 queues.

Note also, that from Eq. (B.19) and (B.22)

limit G(B) =0 => limit PB =0
B 00 B__

Uniform increase of input rates

We now intend to let all input rates increase proportionally

until eventually reaching infinity. At this point we show that our

system becomes equivalent to a closed network of R queues and B cus-

tomers. Let

X. = nA0  1 = 1, ... , R (B.26) V

0
where n is a positive real variable and X. is a constant. The service

rates (pCi) are maintained constant. Eq. (B.26) is also equivalent

0 
0

to saying that pi = TIP with Pi constant.

From the above definition and Eq. (B.15),

GG(K) T kGO(K) (B.27)

R OK
where G (K)= Ai(P i )

i=l1

0
Notice that A. is invariant; hence, G (K)is a constant. As a result, 01

and from Eq. (B.15)

= nKGO(K) => limit P =0
P0 -nG()0

K=O J 00

Furthermore, from Eq. (B.21)

limit P2
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In other words, as expected, the system is full with Probability 1

(probability of blocking is consequently equal to 1).

With regard to the joint queue length distribution, Eq. (B.12)

becomes,
R

n. n.
i-I R (O)

P(n) -- ( lPi n E: FbP~ B kOb
0kOk i=l~

Ti G (k)
k=O

Thus
An.R n

for n e F and s.t. E.n. =B

limit P(n) =b(B.28)
0 otherwise r

With respect to the marginal distributions from Eq. (B.24),

limit P [n. >j]= GO(B() 0)(.29)
GO G.(B)

Furthermore, the limiting throughput of type-i customers is

0
limit (1 PB)nxO = GO (B - 1) x0 (B.30)i 0O  1
J - 00 (B)

The above results are typical of a closed network of queues with R

service centers and B customers, such as Buzen's central server model

[BUZE 71]. In fact, if we consider the buffers as customers and if we

let A./E., i.e., X./EX. , be the relative rate of arrivals to server i

(i.e., rate ol-allocations of freed buffers to server i), and n. be the

number of buffers allocated to server i, then the distribution of buf-

fers is given by the above expressions (Eqs. (B.28) and (B.29)).
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Moreover, Eq. (B.29) shows that there is a non-zero probability
0r 0i 0 1

that server i is idle (Pr[ni = o] = 1 - GO(B - 1)pi/GO(B)). Therefore,

even with infinite input rates, server i is not fully utilized, which

was not the case with CP (see Eq. (B.10)).

The numerical example below illustrates the general and limit-

ing behavior of this system with respect to n. In this example we

0 = .4 0 0 0
assume that R = 4, B : 20, p1  0., 2  0.4, p3 = 0.6, p4  0.9

0
and we let P TIP

The utilization of server i is p' = (1 - PB)p = (1- PB)np .

The limiting value of Ti(1 - PB) = 1.111; hence, rn + => p' = 0.1111

= 0.4444, p' = 0.6666, p' = 0.9999. Notice that server 4 reached

saturation whereas the others are very far from it. The average total

limiting utilization is p 1 p = 0.555 instead of I which could be

obtained with CP.

Furthermore, Fig. B.3 shows the behavior of the average number

of type-i customers in the system (i = 1, ..., 4) with respect to n.

Also represented, is the average total number in system, n. The limit-

ing values for the averages are (obtained at rj = 20)

n 1- 0.125, n2 - 0.800, n3 - 1.99, n4 - 17.02 and n + 19.94 -- B.

Notice that for large n, most of the buffers are, on the average, used

by type 4 customers. Also, a sharp increase of n4 (from 4.8 to 14)

occurs when n varies from 0.95 to 1.5. The value of n = 1.111 would

correspond to the saturation of server 4 (i.e., p4 
k- 1) if there were

no limitation in buffer storage, and at that point the queue size

becomes infinite. This explains the sharp increase in n4, mentioned

above.
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* Figure B.3. Average Number of Customers in the System, CS Scheme with Asynietric
Input Rates.
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In summary, we conclude that with quite asymmetrical utili-

zations {},CS tends to favor the server with the highest utilization

even though it has reached saturation. Furthermore, the other servers

are left with very little space to share. These considerations motivate

the schemes studied in the rest of this appendix. Before we proceed,

let us apply the general results obtained in this section to the case

K where all p's are equal.

B.2.3 Special Case: Equal p.' s

This section deals with the case where all the p Is are equal

and we let p be the common value. As a result, a simpler expression is

obtained for G(K), and thus for the other variables and distributions.

G(K) is the well known expression obtained for networks of

queues [KLE1 75],

+ KI

4G(K) = ( (B.31)

Thus, from Eq. (B.15)B K Rl

P (B.32)
0 P.( Rl

And from Eq. (B.22)

B (4R - ) 1 (B.33)

R ( - 1 )P
K=O

Also
Z.n.

P(n) P Pp1 (B.34)
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With respect to the average number of customers of any type (say i), the

numerator of Eq. (B.24) becomes

B-1 B-n B- B B (n + R

.( P - n )n - Gn) -G Ln)
n=O n=O n=O R - 1

B-i
- G(n) -
n=O R

hence, B-1
G(K -~(B + R - 1) B

S p B i 1, R (B.35)

. G(K)
K=O

In the above proof, we used the identity

m r )(m=i(B.36)

K=O "k m

Similarly, the average time in system of the non-rejected type-i

customers is

B-= 1 K1/X~ ~ R - 1 R

i 1 - p B-i RKRiK i,....R
R= R- 1 )P

K=O (B.37)

Of interest are the two cases when p = 1 and p +

0 R.- iIB+R\B

P~nl, "''. nR) = P0  V-n E Fb
B+R 1

t R R C.
PB= R+B

-i iR + 1 "'R"n R + 1 (B.38)
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We frequently used Eq. (B.36) in the derivations of the above equations.

Note that all states n are of equal probability PO. Furthermore, if

R = 1 we find the results obtained in Section B.1 (Eq. B.11).

The expression of PB may be rewritten as 1/(1 + B/R), which is

exactly the same as for a single MIM[1 queue with B/R buffers (Eq. B.11).

This means that for p = 1, CS and CP lead to the same probability of

blocking. This fact will be illustrated in the figures below.

___ 'Ii

The service rates (PC.) are assumed to be constant. The limits

are

P - 0 , PB 14 0

n. B/R n B
i B(B.39)

" B PC i= 1, R
i B +R-1 i

B+R- I Iti R RiC.

As noticed earlier, infinite input rates do not lead to full utilization

of the servers (except for R = 1), but only to a fraction B/(B + R - 1)

of the capacity.

The behavior of the probability of blocking, PB, the throughput

normalized with respect to the capacity, X,/IjC i , and the delay normal-

ized with respect to the average service time, PCit i , are illustratedii

respectively in Figs. B.4 - B.6.

This concludes the analysis of the complete sharing (CS) scheme.

Let us now compare it with the complete partitioning (CP) scheme.
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Figure B.4. Probability of Blocking; CS Schene.
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Figure B.5. Normalized Throughput, CS Scheme.
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* Figure B.6. Normalized Delay; CS Scheme.V
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B.2.4. Comparison of CP and CS

We assume that all p i's are equal (to p) and that each server

"contributed" B0 buffers, i.e., bi = B0 i = 1, ... , R (see Fig. B.l.a),

therefore, B = RBO.

With the above conditions the behavior of CP (any queue) is

identical to CS with R = 1.

Fig. B.7 illustrates the behavior of the probability of block-

ing, PB, with respect to p and for a set of values of R, (R = 1, ..., 4).

R = 1 corresponds to CP; R = 2, 3, 4 corresponds to the merging of

2, 3, 4 single queues. Note that all the curves meet at p = I where,

from Eq. (B.38), PB = 1/(l + B0). Note also that for 0 < p < 1, CS leads

to a smaller PB, hence a better performance than CP. This improvement

is quite considerable for small values of B0 and increases with R.

However, for p > 1, CP shows a slightly better performance (smaller PB)
3

than CS, namely for small values of B0.

Fig. B.8 shows the respective channel utilizations p(l - PB)

(normalized throughputs A'/iC). Note the loss in limiting throughput

(p + ) with CS for small values of B0 *

Finally, Fig. B.9 shows the respective average delays. We note

that the average message delay increases as more buffers are provided,

i.e., as R increases.

The slightly better performance of CP for p > 1 intuitively in-

dicates that some buffers should be permanently allocated to each server.

This idea is incorporated in Scheme 4, SMA. Moreover, we observed

earlier that very unbalanced input rates lead to uneven (on the average)

usage of the storage space. This remark motivates the next scheme, SMXQ.
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B.3 Sharing with Maximum Queue Lengths (SMXQ)

Like CS, SMXQ allows the sharing of a pool of B buffers with a
w4

further constraint imposed on the number of buffers to be allocated to

any server, and at any time. Let b. be the maximum number of buffers1

that can be used by type-i customers; the set of feasible states becomes

R
F, 0 < n. < B , 0 < n. < b. i = 1, .... R

F ~ --I~. i=l 1 - - 1- 1

Taking advantage of a previous remark, we directly write the set of

local balance equations which describe the behavior of the system of

queues in steady state. We consider below the possible transitions for

type-i customers,

1.

\iP(nl , ... , n n) + ViP(nl, ... , n. + 1, ... , nR)

= (X. + i)P(nl "''' ni" nR)

for all n s.t. 0 < n. < b.~ 1 1"

R
< n. + 1 < B

mS

0<n. <b. j #i

2. XiP(nl n. - 1, R) -- P(n1, ... , n., ... , n)1'' nR'*i*nl'' i1 '1 nR) ,

for all n s.t. n. = I and 0 < En. < B

or

n b 0 < n < b.

and
n. > 1 and E.n. B

1- J

n . < b. 
I
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Again, it is easy to check that the joint probability distribution

satisfies qs. (B.12) and (B.13) where Fb is replaced by Fc."

The evaluation of P is much more complicated here, because

of the added constraint on n In what follows, we again consider the

two cases of different and equal P. 's.

B.3.1 General Case

In this section the Pi's are not necessarily equal. We first

evaluate PO. From the above considerations r

B

P = Q(K) (B.40)
0 K=O

where Q(K) Pl PR (B.41)
R

Z n.=K
i= 1
o<n. <b.

Note that the difference between Q(K) and G(K), Eq. (B.14), comes from

the added constraint, n.< b..

In order to find Q(K), we use a method similar to the generat-

ing function approach. Let f(t) be defined as

R b. b.
2 2 1 1

f(t) = (1 + pit + p t +... + pi t ) (B.42)

By expanding the above product, we recognize that Q(K) is the factor of

tK.
tK , i.e., "

f () Q() Ql) + + (K)t + + Q R b Zbi

R

Note that Q(O) = 1 and that the highest degree is equal to , b..
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The function f(t) may be rewritten as,

l+b. l+b.
R 1 -i t

f(t) =il(B.43)

11
R 1

Let h(t) = l+b. l+b. -'
i=l i t

R 1+b 1+b k(l+bi) k(l+bi)
1 (I + P i 1 + + i t ...

(B.44)

Then from Eqs. (B.16), (B.42) - (B.44), we have

g(t) = f(t)h(t) (B.45)

The above relation will allow us to express G in terms of Q and C..

The term C. results from the partial fraction expansion of h(t).

Assuming that all p.'s are different, we find

R C.
h(t) l+b. 1+1b.

i=l 11 P i.x..I

1p. t
1

R l+b. k(b.+l)

S ci( (Pit) ... (pit) 1 . (B.46)I R
where C= I l+b. (B.47)

Finally, Go Eb.

G (K)t = , Q(K) t [ i + (pit) 
K=O \K=O i= U

+ ... + (pit) k(+b (B.48)
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Then equating the terms of equal degrees in t, we arrive at a relation

between G, Q and C. 's. 'Thiis relation is quite complicated and requires1

the ordering of the b. 's and their multiples. However, if we restrict
B

our considerations either to the case where bi > or when b b

for all i, then we obtain the simple relations below.

i. We assume that each queue is allowed to occupy more than

half of the entire space, i.e.,

b. > B/2 V i = 1, ... , R (B.49)

then 2b. + 2 > B and b. + b. + 2 > B. Therefore, in order to find
1 1 J

Q(K), K = 0, 1, ... , B, we only need to consider the terms in h(t),

of degree 0 or 1 + b. Those terms, obtained directly from Eq. (B.44)

(i.e., without the assumption of different Pi's), are

R l+b.
1 + _ (Pit) 1i=l 1

Substituting the above expression into Eq. (B.48), we arrive at

R l+b.
G(K) = Q(K) + P. 'Q(K - b. - I) (B.50)

i=l 11

i s.t. b. < K

ii. b. = b i = 1, ... , R

Similar to G(K), let us define

(l+b)n I  (l+b)nR
L(K) = 1 ... "'PR (B.51)

E.n. =K
1

Then, from Eqs. (B.45) - (B.48),
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L(K) C. r) 1p+b) K (B. 52)J
i= 1

and h (t) =X L(K) tlb) (B.S53)

Substituting the above into Eq. (B.48), we arrive at

b 'G(cL(b +1)+k) = Q((ct - i)(b + 1) + k)L(i) (B.54) U

and 0 < a(b+l1) + k <B

Note that G(O) =Q(0) =L(O) =1, and that Eq. (B.54) allows theKsequential computation of the sequence Q(K), for K varying from 1 to B.

Note that if b > B/2, then Eq. (B.54) becomes

$G(k) = Q(k) for 0 <k <b

G(b +1 + k) = Q(b +1 + k) +Q(k)L(l) 0 < k < B -b I

and from Eq. (B.51), L(l) = thus the combination of the

last three equations gives Eq. (B.50) with b. b.

In what follows, we restrict our considerations to the case

where b > B/2, unless specified otherwise. As a result, and from

* Eqs. (B.40) and (B.50), we arrive at

B-b.-l
~,l B R 1-b.
-1 G(K)- p 1 P G(K) (B.55)
0 K=O i=l K=0

*Note that if b. B for all i, then SMXQ becomes CS, and the above

equation reduces to Eq. (B.15).

1 a-1A

By convention we set =0 a integer
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Similar to SectIon B.2, we now assume that all the pi's are

different (p. g p. ¥ i # j); then using Eqs. (B.19) and (B.20), we

arrive at
B-b.

l R P. R l+b. R 1-p 1
= 0 Ai 1 E pi  1E A.i=1 ~ 1-i=l j=l 1-p.

05b <B
1 (B.56)

Eq. (B.12) with Fb replaced by Fc, and Eq. (B.55) or (B.56) completely

characterize the queueing system under SMXQ and the condition of Eq.

(B.49). Similarly to Section B.2, we proceed with the derivation of

distributions and average quantities of interest.

Distribution of the total number in system: Probability of Blocking

Let n be the total number in system; then, for 0 < n < B,
A:

= P [Z = n] = Q(n).n r • i 0

rR 1+b. it
P= Po[G(n) - pi iG(n - b. - 1 (B.57)i=l i

b. <n

Let us now derive the probability of blocking of type-i customers, PB.
1j

Recall that type-i customers are blocked if upon arrival the entire

space is full, or if the number of type-i customers is equal to b.

Since arrivals are Poisson, then

PB. = Pr [EXn = B or ni = bi] (B.58)

which is also

PB. = Pr[Z.n= B] + P [ni = b. and E.n. < B]
1 rj ri i
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Moreover,
B-b. -1

I

PBi PB P[ni = b. and 2 n. = b. + K'
K=O 1 J I

Because of Eq. (B.49),

n. = b. > B/2 and E.n. b. + K => n. < b. v. j # i1 1- jJ 1 J-J

Hence b.

P r[n b and n. = b. + K] POp 'Gi(K)r -1 1i  an j 1b- Oj

where; nl n. n. n
G() n-i i+. R (B.59)(K) = P] O " - P~ PR

S E n.=K 1 i1 i+ R

'?ii i~i J

Finally - I
b. i

PBi =P + PP 1 Gi(K) (B.60)
i B 0 i K=O 1

where PB is given by Eq. (B.57).

Note that G.(K) is similar to G(K),*except that we deleted pi (i.e.,

type-i customers).

We now proceed with the derivation of the marginal distribution

and average number and delay of type-i customers.

Marginal distribution and averages
Let k < bi , then

n= nR k 0 Oju'ii Pr[n i = k] =Pon Pl "'PR =  oPi O .<-

"Oc 05 E i.- B i

n.=k O-n.<b.
3 4
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-01
The summation above is similar to that of P except that B is now B -k

B - k
and the component n. is deleted. Also note that b. > 2 .Lj i,I J 2

hence the above summa'ion is given by Eq. (B.55) where B is replaced by

B - k and G(K) by G.(K) (as defined in Eq. (B.59)). Thus,

B-k-b .-l

k B-k R 1. -
Pr [ni ; k] = PP 0 Gi(K) - jP K-O Gi(K) (B.61)

j i

The above summations can be further reduced to expressions similar to

the one in Eq. (B.56).

As for the average number of type-i customers,

b.

i -- kPr[n i = k] (B.62)
k=l r

With respect to the throughput X. and the delay ti., the expressions

X= (1 - PB.)X. and t. ii/)i still hold true.

This terminates the characterization of the system as operated

with SMXQ and with the assumption of b. > B/2 and different p 's. Next

we study the case of equal p 's; we leave numerical applications to

Section B.6.

B.3.2 Special Case: Equal pi's
1

Similar to Section B.2.3, let pi = p ¥ i; then, G(K) is

given by Eq. (B.31). Also, we assume that all the b.'s are equal to b

and that b > B/2. Therefore, from Eq. (B.55) P0  becomes

P0 = + (K - )K b+1 Bb oK R - I K (B.63)
K=O K=O -'
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As for the distribution of the total number of customers, from

Eq. (B.57) we obtain (for n < B) 1
• :.r P R- 1, n 0 < n < b 

' p(:)(B.64)

' P [n + R 1[ R(n =b ) R 2 pn b < n < B

~1*

• : G(K), we have

b (K ) = K+R2 K (B.65)"':i R -2"

Substituting Eq. (B.64) for n B, and Eq (B.65) into Eq. (B.60),wearriv at l
+ = Pb -- ( R - 2 K (B.66)

With regard to the marginal distribution of any type of customer, say

i, from Eqs. (B.61) and (B.6S), we find

B-b-k-l 

K
P r[n i=k ]  P PpLZ R - 2 -(R-1)pb+ K=O R - 2 P 1

.
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"! for k < b@

i.!=0 otherwise (B. 67)

The rest of the expressions, ni, XI, ti , follow in the same way as..

before. Of interest is the case where p =1 andp 1

Using the identity in Eq. (B.36), we arrive at ":
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px1(B +R) R (B b +R) 1 R
R R (B. 68) .

PB P 0[(B + 1) -(R -1) (B b + R- 2)

Note that if R = 1, then PB = P0  1 l/(b, + 1), which is exactly the prob-

ability of blocking (and P0) for a single MIMI1 queue with b buffers;

because of the constraint, n < b, the rest of the space B -b is

unutilized.

As for R = 2, then

b+ 1
P (B +2)(B+)/2 (B b + )(B b) (B.69)

Note that for the two limiting cases where b = B, i.e., CS and b = B/2,

i.e., CP, we have PB = 2/(B + 2); which checks with the previous results

(Sections B.1 and B.2). Moreover, a question arises as to choice of b.

This question and numerical examples are presented in Section B.6.

Let us now consider the case when p goes to infinity.

p. 00

Of interest is the limiting utilization. Let p' be the

utilization of any server; then p' = (1 - PB)p. Before we proceed,

note that P - 0, PB - 1. As for p'

(B!R-R(B b + R 3- _( R 2
pR' (I (B 1 R- 1 R 2

B (1 - PB)p (B 2)
R - 1 R R -

(B.70)

Note that if R = 1 then p = 1 (provided that B > 1); whereas, for

R =2 (B > 1), two cases are possible:

i. B/2 < b < B => p = 1

ii. b - B => p = B/(B + 1)
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Both results are to be expected. b < B implies that no one of the two

types can utilize the whole space, and hence, at p = the two types

are always present. b = B implies CS; hence we are back to the results

of Eq. (B.39) for X/C i and R = 2.
1 1

B.4 Sharing with Minimum Allocations (SMA)

Similar to CS, SMA allows the sharing of a pool of B buffers,

and in addition, a. buffers are permanently allocated to type-i cus-
1

tomers, i = 1, ..., R (see Fig. B.1). As a result, the set of feasible

states becomes

R
F =In IS, sup 0, n- ai.} < B ,0 < n. < B + a = 1,..., R
d i=l i 1

Here also, we can write the local balance equations and verify that the

product form solution satisfies those equations. Following the same

steps as earlier, we first consider the general case of different pIS.

B.4.1 General Case

In order to evaluate P0' we partition the set F into disjoint

subsets which lead to known summations. Let ? be the set of customer -

types,
44 W 1,2, ..,RI

and let .1' be the set of all subsets of ,.

,0 X . , 1 < m < 2R} -

WI
' 1
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The set X contains 2R elements; among them are the set .R itself and

the empty set. We then associate with each subset, Xm, a subset of Fd, S
S defined asm

> > a  i C XS = c F d f n i -i m

< ai otherwise

Equivalently,

S(n. - a.) < B, a. < n. < B + a. for i c X

m Xm ni < a for i Xm

Obviously, R

sfl ns m n and F=~
m n d U Smm= 1 IFF

Therefore,

1 R n 2R R n:-"-'. PO1- n F ( 1 Pi ) -- P i')  (B.71) ii

0 de (il M--l neS i-ld~m

Let H be the summation over all states in S then
m m

R nin n.
Hm=AnS  i ): = X ( i)0- F XPI

n. fl.L lPiP
~m i=l i m O~n.'a. 0 (n.-ai)<B i m

i X
m

a. _<n. B+a.
1 1 1

Hence, a.
p a. n.

H= - ( 0i  H P iidX im HX 01 E n.<B icX

m

0!<n.:_BU. ~1

Let us define the generating function Cm, such that

350

*



X (K) p. (B. 72)
m '0~n.n.E n.=K irX m

1

C (K) is similar to G(K) given in Eq. (B.14), thus it can be computed
m

in the same way. Finally, let a = (a I aR Then

2R

( [a, B] 4-P-1

a. (B.73)
A i a. B

HP[a, B] = H IT 1 IT Cm(K)

m 1 - 0m
K=Oin m

Note that if a. = 0 for all i, then - =R Cm(K) = G(K), and the

above equation reduces to the description of CS. Also, the summation of

C (K) is set to 1 if X =
m M

If we now assume that all Pi's are different, then from

Eqs. (B.18) and (B.19),

C (K) = A. pK (B.74)
m iX 1 ,m 1

where

kA kX 1 (B.75)
Cm Pk

k i

Using a similar summation as in Eq. (B.20), we arrive at

a. B+l
1 - p.i a. 1 - p.

Hm =1 1 II 0i  A. (B.76)
i4X 1 - pi  iEX iEX im I - p.

m m m
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Eq. (B.12) with Fb replaced by Fd, and Eq. (B.73) or (B.76) completely

characterize our system. We now proceed with the derivation of dis-

tributions and averages of the variables of interest.

Distribution of total number of customers in shared area; Probability

of Blocking F

Let n be the total number of customers in the shared area,
5

i.e.,
RA

n = sup 10, n. a. (B.77)Si=l 1

Then the distribution of ns is, for k < B, equal to the sum of proba-

bilities of states n which satisfy Eq. (B.77) for n k. In order

the evaluate that summation, we use the same methodology as for the

determination of Po. Let Fd(k) c P and Sm(k) C Sm be defined as

R
Fd(k) = n I E sup {0, n. - ai } k, 0 < n. < B + a 4i=. 1 -1- 1j

S a < n.< a. + k i E X (n a .
S (k)a n 4Xn < axm

It is obvious that Fd(k) = U Sm (k), and consequently

Rn2R  R n.

Pr [ns = k]=PO 3 (POT 1 ') (B.78)m=l nCSm(k) l

Let h (k) be the summation over all states in S (k), then similar to
m m

the above
2 R

P [ns = k]= PO h m ( k )

ai
P a.

hm(k)= X f ')Cm(k) (B.79)
. Vm i4X 1 - P. i x
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fr.-.f

a.
Ri- p.1

Note that if X =, then h M(k) f 1 and thatmm i=lli- P.
1 5

l+a.
nI nR R 1- Pi I

Pr[n = P l R = r 1 - p (B.80
O<n.<a. -a. i=1

With respect to the probability of blocking type-r customers, PB r, it

is 'i
PBr P [ns B and n > a (B.81)

r r s r

PB can be computed similarly to P [n = B] with a restriction on the
r r s

choice of the subsets X, which must contain r, i.e.,

PB = PO F hm(B) (B.82)
m

mI rEX

There are 2 R-1 such sets which can be obtained as follows. Let

I= - {r} and ' X n 1, ... , 2 be the set of subsets

of .R, then X = u f{r} is such a subset of RA which contains r.n n
Marginal distribution and average number and time in system

We now proceed with the derivation of the marginal distribution

of the number of type-i customers; more precisely, we intend to find

P [n > j]. We consider the two cases which depend on whether j is
r r -

less than a or not.
r

i. 0< j < a

n n-j nR
Pr[n. > J] PJ P pr .r - or n 1~ "'r "'r

flEF d
nj
r
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Let

a' = i (B. 83)
1 a r-

"-" be the new minimum allocations, and Fd be such thatd

R
Fd n [ sup {0, n i - a'} < B, 0 < n < B a'

Si=l1 1-

Therefore
Pon nI  n nRr n r > J ] = j P I  ".. . r ... R

d Ir.

The summation above is similar to the one of PoI, Eq. (B.71), where

Fd is replaced by F'. Let us define the vector a'= (a' a, .. , );

* then, replacing a by a' in Eq. (B.73), we find

J [n ] - Po1 [a B] P PJ i1 H[a' B] (B.84)
,;Prnr >  Z' 0 = o [ B =POr _

.j < a
r

i<a <j <B

j-a nl nr -j+a n R
P r[n r > j] = Pr Od Or r ' R

ne Fd

r

To evaluate the above summation, let us define the set
i " R

R_ sup {0, n. - ai} <B -j + a

F ' n i l s-- r

d -
0 < n. < B -j + a + a.i
-r 1

Then, replacing n - j + a by n r, in the above equation, we arriver r r

at

F
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-d
n a

r r

The set Fd" is similar to F except for the condition nr > ar, and the

change from B to B - j + ar; then similar to the derivation of PB

j-a
Pr[n > j] Po r E H(a, B- j + ar) for ar<j _ B

m

m I rEX (B.85)

Eqs. (B.84) and (B.85) give the marginal distribution of the number of
type-r customers. As a result, we can derive n Xr and t

r r r

Let us now apply the above results for the special case of

uniform utilization and allocation.

B.4.2 Special case: pi= p , a. = a

The assumption of equal pi's and ai's, leads to much simpler

expressions of the variables above. First, if p is the size of the

subset Xm(p = iXmI), then from Eq. (B.76)

Cm(p 1 P K (B.86)

Note that if p = 0 then

0 K>0
C=(K) (B.87)1 K=O0

Also, from Eq. (B.77)

H( -- a Ppa  (K+ p )PK (B.88)1 pK=O p - I:
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Note that Cm(K) and Hm(k) depend only on the size p of the set Xm The

number of sets X of size p is equal to (R thus from Eqs. (B73) and

(B.88),

R-p
=0 11 - pa K + p- K

(= K=0 - 1 (B.89)

Similarly, we derive the expression for PB (Eq. (B.82). Recall that
r

we only account for sets X which contain r, hence p > 1.
m

PB = 0 1)( 1 a) R pa( B - 1 )PB (B.90)

- -1B+p-1I
p=l

r= 1, ..., R.[

Note that in the above expressions, a was assumed to be greater than

zero; if a = 0, then all subsets X are empty except one: X =
m m

whose size is equal to R. Moreover, with a = 0, SMA reduces to CS

and Eqs. (B.89) and (B.90) for a = 0 check with Eqs. (B.32) and (B.33).

Now, if B = 0 then SMA reduces to CP, and in fact, Eqs. (B.89) and

(B.90) become

R
p 0 1 ( 1 P a + l ) 1 P B

0 1 - r - a+l p

Let us now derive the marginal distribution of the number of type-r

customers. Eq. (B.84) provides Pr [ni > j] for j < ar; the terms

H [a, B] can be evaluated as in (B.89) except that a = ar  j.
m - ~r r j

Therefore, we must distinguish the sets Xm which contain r from those
R

which do not. If p = IXmI, then (R-l)such sets contain randm p 1

(R - 15p )do not. As a consequence
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-ep

R-p

R1R -1 1 - pa (K-p-1) PP r a[n - raj] P 0 p P K p

1 a-j B l-1 K forj <a

l P 0pa+j (K; + p(B.9fo1j< )
K=Or

(B. 91)

For the case where j > ar, then from Eq. (B.85) and using the same

procedure as above, we find

P~[n>jI= R P)( Rp (pl)a~ B-ji+a(K;P-lR 1- (~ K )
(B.92)

With respect to ir, Ar, tr , they follow from the above considerations.

Of further interest is the limiting behavior when p goes to

infinity.

P -0

We expect, with the minimum allocation of a buffers per

server, to obtain a full utilization of all servers. The terms of

highest degree in P, PB and p(l - PBr) are
0 r r

B +R - B+Ra for -1 and PB
R - I rfrO

B+R-I2 + ( +R - 2 B
R PR-2a for p(l PB)

Therefore, p - ==> 0 O, PB 1 I p(l - PBr I.

This concludes the analysis of CSMA, the numerical applications

and questions related to the choice of a are treated in Section B.6.

3
4v
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B.5 Sharing with Maximum Queue Length and Minimum

Allocations: SMQMA

In addition to SMA, SMQMA (or scheme e) imposes a constraint

on the number of buffers from the shared pool to be allocated to any

server, and at any time (see Fig. B.1). Let b. be that constraint with1

respect to server i. As a result, the set of feasible states becomes

F = {n e Fd I 0 < sup {0, ni - ai. < bi  i = 1, R}

Equivalently,

R
F = in I 0< E sup 10, ni - ai < B, 0< n.< a. +be:":i=l

* Here also, we can check that the product form solution satisfies the

local balance equations. Thus we may proceed as earlier with the

evaluation of P0 and subsequently determine the distributions and

quantities of interest. First we consider the general case of differ-

ent P.'S.

General case

The same procedure as in Section B.4 can be utilized to

partition the set F into disjoint subsets which then lead to knowne

summations. Those subsets are

(ni - ai) < B, a. < n. < b. + a. i E X 1

m m n <a. i Xm

Consequently,

1= H em= Hm (B.93)00 JM=- 1
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with a.

He i= )( n Q(K) (B. 94).. m iX P i ieX K=O
, m m

where Q(K) is as defined in Eq. (B.41)

As a consequence, the computation of P01 follows as in

Sections B.3 (for Q(K)) and B.4. This remark holds true for the compu-

tation of the summations which may appear in the analysis of this

scheme. As a result, we need not carry the study of this scheme any

further.

B.6 Further Numerical Results and Comparisons

In this section we intend to compare our first four sharing

schemes: CP, CS, SMXQ, SMA, under the assumption of equal pi's. Before

we proceed, let us recall that if B is the total number of buffers

(B = R0) and b is the maximum queue size (for any queue) when using

an SMXQ scheme, then

1. if b = B SMXQ is equivalent to CS

2. if b = B0 SMXQ is equivalent to CP

3. if R = 2 then SMXQ is equivalent to SMA with a minimum

allocation per queue equal to B - b.

As a result of the above, the study of SMXQ with R f 2 and a variable

b will allow us to cover the four sharing schemes to be considered here.

In the numerical example below we assume that R f2, B = 6

and that b satisfies B/2 < b < B (see Eq.(B.49), i.e., b = 3,4,5,6.

From our previous considerations we know that b = 3 leads to CP, b = 4

and b =5 lead to non-degenerate SMXQ, SMA, and b = 6 leads to CS.
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Figs. B.10, B.ll and B.l2 show respectively the probability of

blocking PB, the channel utilization p(l - PB), the normalized average4

message delay p~CT, obtained with the four schemes. With respect to

blocking and utilization, the optimal b (i.e., the optimal scheme) is a

function of p. We note that for small values of p, b =6 (i.e., CS) is .
optimal; as p increases b = 5, then b = 4 (i.e., (SMXQ, SMA) become

optimal, and finally, for a larger p, b =3 (i.e., C2P) becomes optimal.

With respect to the average delay, it is an increasing function of b.

There is, consequently, a tradeoff between the probability of blocking

and the system delay. Therefore, the selection of a particular scheme

should account for these two variables as well as the load on the

'U system.

B.7 Conclusion

In this study, we considered various schemes for sharing a

pool of buffers among a set of commnunication channels in a communication

network environment. Five sharing schemes are examined and the results

of the analysis are presented and displayed in a fashion which permits

one to establish the tradeoffs among blocking probability, utilization,

throughput and delay.

We found that no one scheme is always optimal; one should

select a scheme to fit the particular operational environment. This

study shows that, in general, sharing with some restrictions on the

U contention of space is certainly more advantageous than no-sharing, -1

especially when little storage is available.

360



101

R=2

-- 4

00.4 0.8 1.2 1.6 2.0 i
d Figure 9.10. Comparison of the Four Schemes: Blocking.

4-1

361



0.8-

0.63

~~b=4

b=5

0.2-

0 0.4 0.8 1.2 1.6 2.0
p

4 Figure B.1 1. Comparison of the Four Schemes: Utilization.

362



R=2

3b=3

CP SMVXQ

0. 0.4 0.8 1.2 1.6 2.0

Figure B.12. Comparison of the Four Schemes: Delay.

363



APPENDIX C

PROPOSITION 6.1 AND ITS PROOF:

APPLICATION TO SOME SPECIAL CASES

C.1 Optimal Clustering Structure

Proposition 6.1

Given m, the number of levels in the hierarchy, and assuming

that c. > 1 for all i = 1, ... , m, then the solution of the optimization1

problem 6.11, i.e., the optimal clustering structure, is such that:

(a) All clusters at the same level, k = 1, ..., m, are composed

of an equal number of lower level clusters, i.e., all nodes at the same

level in the tree representation are of equal degree. The optimal degree

vector reduces to an m-dimensional vector, n = (nI , n2, ..., nm), whose

components are the solution of the following set of difference equations:

nk(im,i , .. ik+l) =nk for all k = 1, ... , m

and (im, .... ik+l)

Nn~ n 1n -- n~n .n m

k-l-D

*-- k~ 1 (6.12)(. 1) - [iB ni1 D Dk+l
k k

k i=k+ -

k =2, 3, m

where by convention n n = 1
i=m+l

364

r -- -. - -- ... .. .. .. .



and Dk is the solution of

D2= 1
1 (6.13)

k-2
Dk =k_lDkl+ f (a. 1) k > 3

. i=l1

Also, Bk is the solution of

a1

2 k-26.14)

-la k -2 1 (a. -1) (.48" D k - D 1 (0-'1_ B D k _,D '
k k-I kBk i=1klkl

k > 3

(b) With this optimum solution, the minimum computational

cost is:

G(m, a, a) = Bm+I (6.15)

During the course of the proof, we will first fix a set of

variables and carry the optimization step over the subset of non-fixed

variables. Then we will replace the optimal values of the non-fixed

variables in the objective function and repeat the procedure until we

exhaust all of the variables. Note that the optimal values of the

non-fixed variables will be exvressed in terms of the fixed variables.

Step-by-step, the above strategy will proceed as follows:

1. k4-

2. Fix all variables nj(im, . i j) k j kl, .. m, m

Solve the optimization problem with respect to the

variables n k(im , . ik~l)
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3. Replace the n )Is by their optimal values in the

obj ective function.

4. If k =m Stop

Else k-k + 1 Go to Step 2

Note that when k =m, there are no fixed variables, and the

optimization, is carried out with respect to nm

To introduce some of the ideas incorporated in the general

proof, we shall first solve for m =2.

Optimality for m =2

The optimization problem becomes:

min: G(2, n, a, [n)( 2A B2 n1 2

2=

over: n

n 2
constraint: n n(i)= N ; n > 0

1 2
21

Claim C.1

According to Proposition 6.1, the solution of the above problem

must be such that:

n (i 2 n Nn
n1() 1  n 2 21.. n2

2 ( 2
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Hence, 1

al[nl(i 2 ] - A 0 => nl(i 2) - [.'l

12 = 2 

which means that all nI(i2)'s are equal; therefore, from the size

constraint:

N >0)
- =, n2  (notice n (i2) > 0)

2 2 i2 i". .P2

Step 2

is now a variable, and the problem becomes:n2

min G = N (n2) + (82n2)

over: n2 > 0

Since al' a2 are strictly greater than one, the objective is a convex
2d1

function in the region (n2 > O). Then, if n2 solution of dG = 0 is

such that n2 > 0, it must ba the optim4l solution.

dG '3 ~ (2
-l-_ = 0 => (1 - )(N) (n 2 ) + a 2 (82 ) (n 2 ) = 0

Hence, 1

2= [: 2 N a (l+a2-l

Notice n > 0.

2

By replacing n2 in the objective function,

= (n 2 ) [(N)al + (82) a2 ]

U
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min G(2, n, a, S) = (a + a - 1)
1 21

(0" a at2 .a 1+a 2-1

Proof:

Following the strategy outlined above, the proof will proceed

in two steps:

Step 1

n is fixed. Solve the problem with respect to nl(i2)

i2 = 1, 2, ..., n2.

The objective function, being a sum of power functions

[nl(i)] 1 which are convex in the region {nl(i 2 ) > 0, for all i's},

is a convex function in that region (recall a > 1). Taking the

Langrangian:

n n 2 N
L 'nI , A) = [nl(i 2 )] - n(i) -N

2 2L 1 2
i2=I 2

whe r e As {nl(i )I and X > 0.

a2
Notice that we discarded the constant term (B2n2) and the

positivity constraint, which we will check a posteriori.

The Langrangian is also a convex function (for nl(i 2 ) > 0),

and at optimality n1 must be such that:

=0 i2= 1, n
an (i 2)
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_ -r l) -i  .. ,-j,

G= (n2) 1( 2 +a 1

121... (' N)1l csa 1 +a2 -l.
Lo2 (12 ) (%l 2  (N) .

which, after grouping the terms in a2 at the denominator, results in

the expression proposed by Claim C.l.

General Case

In accordance with the step-by-step strategy, we will first

prove a lemma that provides the solution for the optimization problem

obtained after k steps.

Lemma C. I

The optimal solution of the optimization problem obtained

after fixing the variables n.(im, ... , ij+l) for j - k + 1, ... , m

is such that

n LCi m, ... i+i) n£ , (ira .. ,i) =I, k

D
(a.- 1)B nm n Z+2c- )  a

n ____....~. [9 " n +(i m  "..' i£,+2) "-- "i:,
imli - la. m =1 X2=

--L = 2, 3, ... , k -.

nm nk+2() -
nl -- N n. ... nk nk l(im' ", k 2)

i ml i +=1 k:m.k+k

(C.l)
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and the minimum G is expressed by: k

i

G' (m , B n. Dii
m k+2 kk+2

n
m

+ I" " k+lnk+l(i ik+2
m K+2

m

+ Gkm, n, a,8) (C.2)
j=k 2

Proof:

The proof will proceed by induction. Let us prove that Lemma

C.1 is true for k = 1.

(i) k = 1: All variables, n.(...) j = 2, ... , m , are fixed.

Thus the optimization problem (6.11) reduces to:

mi.n G, = [n I(im "' i 2A
im  i2=

over: ( . i > 0

s.t.: size constraint

Since OI > 1, the above objective is convex in the region nl s > 0.

Taking the Lagrangian, we get

L(n, A) = - ( . n(il, ..., i2) - N)
1m  i2
m 2

In the region, {I  > 0] , the Langrangian is a convex function, and if

the solution of VL1 = 0, where V denotes the gradient operator [ZAN 69],

is such that nI > 0, then it must be optimal.
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*: VL U .- L L~ ~1
1 an(i ... , 12) m 2

By equating the partial derivatives to zero:

9.-. c 1 - 1

:" : ~al [n l ~i m , , i2 (i,
21 2

This implies that all n Is must be equal. Hence, from the size

constraint,

n (i N1l m' "' i 2 ) = nl= E .. I n 2 (im, ... ,i 3 )

2 1

m 3

By replacing n1 in the objective function,

G = N " n2(i m, ... , i)] + K(m, n, a,
i j=2

4m 3

Since B = N and D2 = 1, the above expressions satisfy Lemma C.l.

(ii) General Case

Assuming that Equations (C.1) and (C.2) are true for

= , 2, ... , k , with k < m, let us prove that they are still true

for = k + 1.

According to the step-by-step strategy, we propose to solve

for step k + 1. Let all n.(i m, ... , i ) be fixed j = k + 2, ... , m

and let us solve for

min: G(m, n, ai, 8) as given in Eq. (C.2)

over: {nk+l(im, . k+2 n nk+l > 0.

3 m
Notice that the term, Gk(m, n, a, 8) in Eq. (C.2) is a constant;

j-k+2 .~
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IN

therefore, it will be discarded in the optimization step.

Claim C.2

G(m, n, a,) is convex, with respect to nk+ 1, in the region

nk+ 1 > 0. It is sufficient to prove that Y, the first term of Eq. (C.2),

is a convex function. (In what follows, n (i i, ..., ik)
k m m.-l' k+l

occasionally will be denoted by nk()
k

]I Cai - 1) .

3Y i=lB
k+l m k+2) kln I (i ... kik+2)... lna. -1) V

-"-[

i .. k+2

and

k k
21 nc- 1) Tc . 1) 1

-7722 D_+i + k+I

3[n k+l(i m  • 2k+2)  k+l k+l

k
ll(ai-l)

k+l
x . nk+iC.) Dki)l 2

2which we define as a Y.

The same expression is true for

a2¥

an (i *.~i )_ Y k+
k+li m k+2 k+lcim, ' i+ 2

Consequently, the Hessian matrix corresponding to Y is:
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y

IHy is equal to a (defined above) times a matrix of ones's. Let us

prove that is positive definite in the region nk+1 > 0.

t 2 z i k 2n k l.
~k+iHy~k+l Hk2y ('' nk(n, k

where nt is the transpose of n For n > 0, a2y > 0.

tTherefore, nk> 0 nk+ > 0.
-k+1I-Y~k~l ># >0.l

This proves that Y is a convex function in the region of

interest; moreover, since the second term of Eq. (C.2) is a sum of

convex functions, then G(m, n, a, ) is a convex function.

As a consequence of Claim C.2, if the solution, nk+l of VG = 0,

is such that nk+ 1 > 0, then it must be the optimal solution.

-'00 *

=~0 > an C . "m "~~ k'-'

k i m k+2)

Hence k

k (ai-1)
k i=l 1
fl(ai -I) r D -"

k+ k+l Lim k +2 -k2 
i

-k+

a k+l k+l [nk+,(im, . k+2  ms k+2 )

Notice that the left-hand side of this equation is the summation of all

n (i, ... , i+); hence, it will be the same for all (i, ... , )
k~l m k+2 mk+2)
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Consequently, all n k~l 's are equal. Let n kl(i *. k+ n k= 1

From the above equation

ak+l akl- ~
L l$kl(n kl 1  k a -1 Dk

k~lkl kl~ k~l k -

II(a.i-l

D -

~kl XZ k+2(j 

m k+3

Grouping the terms in nk to the left-hand side leads to nk~ with

the following exponent (to be denoted: exp[ ).1
k k
f(ai -1) ck ID rl (a. 1

1~ K ~k+

Using Eq. (6.2)

exp [n k.1 Dk+2

Also, the exponent of the multiple summation is equal to

k k
Dkl+ (a. 1 fai

1 .D

Dk~l Dk+l

This is due to the fact that:

k k
Dk+l + JJ(a., 1) =fa. (C.3)

The proof of Eq. (C.3) results from Eq. (6.13) as follows:

41
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kJ

Dk + II (c-l)= k (a. )-
i=l i=I

-i a%%i [D - 2 (a -

-"ka . o2 (D2 + o1 - 1) Q.D

k

1 D

-fa. ..

Final ly,
k

I'k+ 1~ D k B ri=1
ak+lek+l Ink+l] = (a. - 1) k+l k+2(]

i n(.)Ikk+3

Extracting nk+l would give Eq. (C.1) for £ = k + 1. Notice that

nk 1 > 0. Now, replacing nkI(i , ... , ik) by n in the objective

4.1 k u k+2 k+1

function, Eq. (C.2), we arrive at k

H (a. -1)

G= B [n ** k
k+1 Ik+1~ 1ce2(m km

m k+3

k+l%1)- -
+ I nk+l 1 * nk(i , .,i )

im  k+3 
o

m

+ j=k+2 Gk(m, n, a,

Replacing nk+1 above with its expression given in Eq. (C.1), leads

to:
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k

k i=1
[ (ai-) B~ Dk+ 2  ()X~7G=Bk+1L ik~ B~~ kI L'"~+

(8 J ~ mk k+2)

-+kl ~ Dk+

k+1Ckl j
ai ( l m k+ 3
Lk+ k+

kkk
f (c -1) Dkc.-) JJc. 1

k+1i= 1 .nk+ D )+
Dk +l k+1 k+3

ak+1 k+

k ~ kk

Alo D k+ = kl D k+ fl (ci -

Dk~k+ki2i:l)

Thus, l
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As for Y, we have

k

EY 1 1 + -

By performing the same manipulations as for X,

k
fl (ai-1

Consequently, X =Y; this property is the key to the proof. It says

that at each optimization step we get one less term in the objective

function.

To prove that Eq. (C.2) is satisfied for X- k +1, there
.

remains to be shown that the coefficient of

nk~ (im, .. . 3'

is equal to B k+'Let U be that coefficient, then

k

k i=1 11

1 [ a -1) B D k2

k~k4.l l Dk J
k1

~Bk Zk~ 1 kB a~k+ 1 i=l +
k1+l k~l ckl~ kl Dk~

k

D IT i- 1)
ikl1L -l

where a~tl -D+
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Then, the term in the second bracket becomes

k

B _____ k.1 Dk.2 Bk~l
k+ k+1 Dk+l O'k+1 k+l

After substitution,

llcx-1 k
k ~~i=l1 lc.)

I I Dk+2

Dk+2  fl~ct1 -l)kk+ [ kl1 1

k+l 1% J
k

1 1) k+l Dk+l
but i1____1- D DDk+ 2  k+2 J

Theefoe, Bk+2 asgiven in Eq. (6.14). This terminates the proof

of Lemma C.1.

Lemma C.1 implicity assumed that k < mn - 1. Let us show that

* -Eqs. (C.1) and (C.2) are still true for Z. k m i. Observe that for

n ml Z+2 (2=1,+k 3
inn

Furthermore, by convention, we set the value of the above sum

to be 1 when X. m. Consequently, Eqs. (C.1) and (C.2) become mean-

ingful for I. =im. There remains to be shown that these equations

effectively hold true at that value of Z. = mn.

For k. k m n 1, Eq. (C.2) becomes: 4
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m-1

TI (a.-1)
i=l1

G(m, n, L, B [n m + [mnm] (C)

The optimization will now be performed over the single

variable, n . G, as given in Eq. (C.4), is convex in the region

On >01. Again, if the solution n of VG =0 is such that n > 0,

then it must be the optimal solution.

m11 (a.i-1) I

i-I -

=0 => am(1m m [ (ai-l) [nm] anm i i m
v m

DB M+m m
• Fff(a. - 1) B DI

Solving for n, n [i am in

m m

This result satisfies Eq. (C.1) for X, = k = m, where the summation is

set ot one.

Also we can easily check that the objective function becomes

G(m, n, c, 8) = Bm (C.5)

since it is the last step in the optimization. The above objective

-4 is actually the minimum computational cost. It also checks with the

expression in Eq. (C.2) where the summations are set to one.

End of Proof of Proposition 6.1 -

From Lemma C.1 and the extension of the expresssion in Eq.

(C.1) to t. = m, we know that
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n i m . .,i +l) -- n5  * (i ... , iL+ I )  = 1, ....

Thus, the multiple summation in Eq. (C.1) becomes,

n n

n i=~l n,
m Y+ 2 'f 7

The substitution of the above summations in Eq. (C.1) results in

Eq. (6.12). Also, Eq. (C.5), giving minimum G, is exactly what we

have to prove, i.e., Eq. (6.15).

C.2 Application to Other Special Cases

This section deals with the following two cases:

(i) Uniform design strategy, variable gate assignment, i.e.,

ok a k = l . . m..

k' s variables (C.6)

(ii) Proportional assignment of gates.

In (i), explicit expressions for the optimal degree vector and

computational cost, given m, have been derived. Some partial results

related to the global optimality have been found when k is of the form, A
k-2.

With respect to (ii), the number of k
th level gates to be

tt

selected is proportional to the number of k-It level gates from which

they are selected. The corresponding sol ution was found to be of no

practical interest. The solution is

380

.. .. ... . .. .. .. _



n =n + om
m

n ... , nm-1  any value different from 0 or , s.t. fin = N.i=l

C.2.1 Uniform Design Strategy, Variable Gate Assignment

The purpose of this section is to model design requirements

whereby different reliability constraints are imposed on the design of

the layer subnets depending on their levels in the hierarchy. However,

the same design procedure is applied at all levels.

C.2.1.1 Explicit Expressions

Corollary C.l

Under the conditions of Proposition 6.1, and assuming that all

the aks are equal, the optimal solution is such that

(a-i) m-k k-1

= L a [ 1 lm D
k ai-l[\a

.m 
am+k-i i-k- k- k-i m-k+i-l

Iik l 1 i="

i 

k[ 8ctaDmJ

Sk 

=1, 2, 
m

(C. 7)

With this optimal assignment, the minimum computational cost is

G D, n N

(C.8)

381

. . ..
4 1........ 

I 

~



Proof:

From Corollary 6.1 (Eqs. (6.21) and (6.22) we know that Eqs.

(C.7) and (C.8) are true with regard to the terms containing a and N.

The term containing 8in Eq. (C.7) can be directly obtained from Eq.

(6.19). The rest of the proof of Eq. (C.8) proceeds by induction

exactly in the same way as in the proof of Eq. (6.21).

Limiting behavior when a -

From Eqs. (6.23) and (C.7),

rn 1 --/mM I/F

limit nk 1 k N 111(C.9)

Since con Eq. (C.9) implies that at the limit all layer subnets

must be of equal size.

C.2.1.2 A geometrically monotonic gate assignment strategy

In order to reach any conclusion with regard to global

optimality, it is necessary to specify k in terms of k. Let 6 b2he a

geometrically monotonic function of k, i.e.,

k-2
k k1, 2, , m (C.10)

Y I corresponds to the uniform gate assignment strategy studied in

Section 6.5. With the above gate assignment strategy, Eqs. (C.7) and

(C.8) become:
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D
m+in 1 a

k-i rn-ka (aL-i)
__________m+ 1n =

k 1 a[( ai m j

and GD 1 [~ aa(im [1 m-

a (c-ifD -(m-i)(a-)" Na]

X Ym Nm (C.i12)

Remarks
-p InY

(i) For M~m M (C.13)

in a-

the degree vector becomes

a a y-a- 1
~.nk a-i ..mi(C.14)

Eq. (C.14) is quite similar to Eq. (6.30), but as we wiii see later,

K: . mi is not the optimal number of leveis (except when y 1 ). 7
(ii) In order to satisfy the gate constraint, Eq. (6.6), the

degree vector, must be such that

n,> nk> ki2, . ,m (C.S)
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The above condition will always be satisfied if < m1 and y > 1.

Other situations may be checked numerically.

Global Optimality
1 I/a

Under the conditions Ny/O > 1 and y > (- -) ,the optimal

number of levels, m,, is the unique positive root of the equation: "

a In Ya In y In a +M
La-liX al~n)l~T 1 aI

(C.16)

The corresponding optimal degree is

8 = a-i e 4j* Tin 7T/-1))

= am- ny(C. 17) i

. In

k = 2, ... , ,

Notice that the expression of n is independent of N.

01-1 "T. ,"a~y-)

Proof"

Differentiating Eq. (C. 12) with respect to m, we arrive at

" .dG(cs-I)"G Fm(m n _nln N ..) a D lny]

,, Y e

*The roots and the sign of the above equation can be determined from the .

study of Eq. (C.16). Fig. C.I shows a straight line for the left-hand bi,
*side expression of Eq. (C.16) and a inonotonicaily increasing (y > 1) "I

or decreasing (y < I) cirve for the right-hand side of Eq. (C.i6),ii

Iy
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It also shows a unique intersection point m*. From the relative

positions of those curves, we conclude that m. leads to a minimum

value of C.

-Y - 1

x "
x i

Y."

Y YoYo V
0 YO

X = LEFT HAND SIDE OF EQ. (C.16)
Y = RIGHT HAND SIDE OF EQ. (C.16)
Yo = (Lg N-y/3) (Loga/(.3'- 1))
Y = Y + aLog-y

Figure C-1. Comparative Behavior of the Two Sides of Eq. 1 C.16).

C.2.2 Proportional Gate Assinment

In certain situations, it is imp~ortant to make the number of
gates selected at any level sensitive (e.g., proportional) to the

number of nodes of the set from which th,;y are selected. Let yk(y <.~ 
k

th stbe the fraction of the k level gates to be selected as k+l level

gates, and let y (YI' Y2 ." ). From the above definitions, the
2' Ym 

'Pi
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degree and the size vectors are such that

g (i 2) = n1(i "', i2)

nkki m . ... ,(ik 1  (C.*18).. 1kgk~m'"'' 'kl)= k('1 Ykl k-1( ra  .. )

lkl

k =2, . ,m

thus,
gn k i. .. n. ,( i k 1)

gkim "'' ik+l) = F, 1 ' F1 ( l Yj) nl I m ' " i2)

ik=l i2=1 1

(C.19)

The general expression of the computational cost of all kth level layer

subnets is

n n (i

Gk(m, n, a, y) = i [gk(im, ,k+l] (C.20)m=l l*+ =1
M k+l

Also, Eq. (6.9) still holds true.

Substituting Eq. (C.19) into Eq. (C.20) for k = m, we find

n 2(i m  .,i 3 )

Gm~ F = mi-17 YJ nl (im. .'i2

Consequently, if n satisfies the size constraint, Eq. (2.1)

G m (I~Y)~
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Hence G (m, n o, YN n feasible (C.21)V Yi ~

Therefore, if for a particular feasible solution n, G is equal to its

lower bound given above, then that vector n is optimal.

Proposition C.2

Under the proportional gate assignment and for ak > 1,

(k = 1, ... , m) and a fixed m, an optimal solution of Problem 6.11

is n* *,

n= 0
-..-

n*= + o (C.22)
m

m
n-, n, ... , n* > 0, s.t. fI n? = N

"+ ' i=l :.

With this assignment

G(m, a, y) - Yi ) NM

Proof:

Let n be a feasible vector, and such that

n(i n k 1
n k'm , ...** +1 = nk  ¥k = 1, ... , m - 1 iW

m( nC.23)
IT_ n  = N ..'

From Eqs. (C.19), (C.20) and (C.23), we Iet
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G(m, na.y N(n) +t- rNi ki)'Ck n k +(tkml cx Nam
k=2 i=l i=k+l i=l

For n equals n*, (Eq. (C.22))

limit n i)V.Ck 0 k 2, ... , m - 1
n - i=k 1m

Hence, G(m, n1*, a, y) = tm N m

Then, because of Eq. (C.21), n* is optimal.

For a realistic network, this optimal solution is meaningless,

and it is necessary either to keep the integer constraint on n or to

introduce other constraints.

L.

i"

t.
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